
Using Utility Functions to Control

a Distributed Storage System

John D. Strunk
May 2008

CMU–PDL–08–102

Dept. of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Thesis committee

Prof. Christos Faloutsos (Carnegie Mellon University)

Prof. Gregory R. Ganger, Chair (Carnegie Mellon University)

Dr. Jeffrey O. Kephart (IBM Research)

Dr. John Wilkes (Hewlett-Packard Labs)

© 2008 John D. Strunk

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
Using Utility Functions to Control a Distributed Storage System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Dept. of Electrical and Computer
Engineering,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

134

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

Provisioning, and later optimizing, a storage system involves an extensive set of trade-offs between

system metrics, including purchase cost, performance, reliability, availability, and power. Previous

work has tried to simplify provisioning and tuning tasks by allowing a system administrator to

specify goals for various storage metrics. While this helps by raising the level of specification from

low-level mechanisms to high-level storage system metrics, it does not permit trade-offs between

those metrics.

This dissertation goes beyond goal-based requirements by allowing the system administrator to

use a utility function to specify his objectives. Using utility, both the costs and benefits of configura-

tion and tuning decisions can be examined within a single framework. This permits a provisioning

system to make automated trade-offs across system metrics, such as performance, data protection

and power consumption. It also allows an automated optimization system to properly balance the

cost of data migration with its expected benefits.

This work develops a prototype storage provisioning tool that uses an administrator-specified

utility function to generate cost-effective storage configurations. The tool is then used to provide

examples of how utility can be used to balance competing objectives (e.g., performance and data

protection) and to provide guidance in the presence of external constraints. A framework for using

utility to evaluate data migration is also developed. This framework balances data migration costs

(decreases to current system metrics) against the potential benefits by discounting future expected

utility. Experiments show that, by looking at utility over time, it is possible to choose the migration

speed as well as weigh alternate optimization choices to provide the proper balance of current and

future levels of service.

i

Acknowledgements

In the ten years that I spent in graduate school at CMU, I had the pleasure of collaborating with

and learning from many very bright people. My advisor, Greg Ganger, has taught me much about

what it means to do computer systems research — to ask the interesting questions, to dig for the

answers, and to write about them in a compelling way. I am very grateful that, during this process,

he permitted me the latitude to find a research topic that suited my interests. I would also like to

thank the other members of my thesis committee. Their feedback has greatly improved both the

outcome and presentation of my work.

There are many people that contribute to the success of a research group and its individual

members. For my entire time as a graduate student, Karen Lindenfelser has always been there

to support the students, faculty, and other staff members. She has helped me on more occasions

than I can count. Whether I needed help with some important deadline or just needed to schedule

a conference room, she was always willing to help. Joan Digney, another long-time PDL staff

member, has ensured that the group’s work has a professional, polished look. I have given her many

rough block diagrams and sketches that she (seemingly effortlessly) has turned into professional-

looking pictures.1

My family has also contributed greatly to my achievements with their support and encourage-

ment. My wife, Corley, has shown a great deal of patience with the amount of time I have spent

in school. We started graduate school at the same time, though she received her degree [Strunk,

2003] long before I. I am grateful to have someone with whom I could share my successes and that

would understand the inevitable complaints. My parents set a foundation for life-long learning by

fostering my curiosity and ensuring that I always had the resources to pursue my interests. It was

their foresight in purchasing our family’s first computer (in the mid-1980s) that sparked my interest.

With my parents help and encouragement, it was on that computer that I wrote my first programs.

1See Figure 1.3 for an example. I have omitted my original sketch to save the embarrassment.

ii

ACKNOWLEDGEMENTS iii

I thank the members and companies of the PDL Consortium (including APC, Cisco, EMC, Goo-

gle, Hewlett-Packard, Hitachi, IBM, Intel, LSI, Microsoft, NetApp, Oracle, Seagate, and Symantec)

for their interest, insights, feedback, and support. Experiments were enabled by hardware donations

from Intel, APC, and NetApp. This material is based on research sponsored in part by the National

Science Foundation, via grant #CNS-0326453, and by the Army Research Office, under agree-

ment number DAAD19–02–1–0389. Experiments were run using the Condor [Litzkow et al., 1988]

workload management system.

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Thesis statement . 3

1.1.1 Distributed storage system . 4

1.1.2 Guiding design and optimization . 4

1.1.3 Expressing objectives via utility . 6

1.2 Tool overview . 7

1.3 Overview of rest of document . 7

2 Background 10

2.1 General related work . 11

2.1.1 Specifying objectives . 11

2.1.2 Previous tools and approaches . 12

2.2 Storage architecture . 14

2.2.1 Ursa Minor architecture . 15

2.2.2 Modeling Ursa Minor . 19

3 Storage system models 21

3.1 Availability . 21

3.1.1 Detailed model . 23

3.1.2 Binomial model . 24

3.1.3 Improvements and related models . 25

iv

CONTENTS v

3.2 Capacity . 26

3.3 Cost and power . 27

3.3.1 Improvements and related models . 28

3.4 Management complexity . 28

3.4.1 Improvements and related models . 29

3.5 Performance . 30

3.5.1 Queueing model . 31

3.5.2 Improvements and related models . 38

3.6 Reliability . 39

3.6.1 Markov model . 39

3.6.2 Improvements and related models . 42

3.7 Other models . 42

3.7.1 Physical space . 43

3.7.2 Robustness . 43

3.7.3 Similarity . 43

3.8 Summary of models . 44

3.8.1 Model performance . 44

4 Utility 48

4.1 Overview of utility . 48

4.2 Utility in computer systems . 50

4.3 Cost-based utility . 50

4.3.1 Examples . 52

4.4 Priority-based utility . 56

4.5 Utility with constraints . 58

4.6 Utility elicitation . 59

5 Provisioning solver 60

5.1 Exhaustive solver . 61

5.2 Random solver . 62

5.2.1 Generating configurations . 63

5.3 Greedy solver . 64

5.4 Genetic solver . 65

CONTENTS vi

5.4.1 Configuration representation . 66

5.4.2 Fitness function . 67

5.4.3 Selection function . 68

5.4.4 Crossover . 69

5.4.5 Mutation . 69

5.4.6 Parameter tuning and stopping criteria . 70

5.5 Comparison of solvers . 73

5.5.1 Genetic solver performance . 78

5.6 Overview of other potential optimization techniques 79

5.7 Summary . 79

6 Provisioning and initial configuration 80

6.1 Trade-offs across metrics . 81

6.2 Storage on a budget . 83

6.3 Effects of hardware cost . 85

6.4 Effects of model error . 85

7 Migration solver 88

7.1 Trade-offs involved in migration . 89

7.2 Valuing a migration plan . 89

7.2.1 Comparison against the current configuration 92

7.3 Modeling migration . 92

7.4 Searching for good plans . 96

7.5 Migration summary . 99

8 Automatic adaptation 101

8.1 Effect of discount rate . 101

8.2 Incremental provisioning . 103

8.3 Repair . 107

8.4 Time to upgrade? . 108

9 Conclusions 111

9.1 Contributions . 111

9.2 Important future work . 112

CONTENTS vii

A Description of modeled components 114

Bibliography 116

List of Tables

2.1 General effects of encoding parameters on system metrics 18

2.2 Main components and their attributes . 20

3.1 Storage metrics provided by system models . 22

3.2 Detailed availability model example . 24

3.3 Asymmetry model example . 29

3.4 Summary of queueing model . 37

6.1 Effect of workload importance . 83

6.2 Designing for limited budgets . 84

6.3 Price affects the optimal configuration . 86

6.4 Effect of model error . 87

A.1 Clients used in experiments . 114

A.2 Storage nodes used in experiments . 115

A.3 Workloads used in experiments . 115

viii

List of Figures

1.1 Spectrum of expressiveness . 3

1.2 Matching data distribution to workload . 5

1.3 Utility-based provisioning loop . 8

3.1 Example Markov chain for reliability model . 41

3.2 System model performance . 45

3.2 System model performance (cont.) . 46

3.3 Total time to calculate system metrics . 47

5.1 Sensitivity to mutation probability . 72

5.2 Sensitivity to crossover probability . 73

5.3 Sensitivity to population size . 74

5.4 Finding rare solutions . 76

5.5 Convergence of the genetic solver . 77

5.6 Genetic solver performance . 78

8.1 Migration using four different discount rates . 102

8.2 Migration plan for incremental provisioning . 106

8.3 Comparison of two possible orderings for repair 109

ix

Chapter 1

Introduction

Today’s storage system administrators manage a large amount of data for a diverse set of users and

applications. Each distinct set of users has different objectives for their data, such as performance,

reliability, and availability specifications, and each application responds differently to a particular

level of service.

In the current state of the art, system administrators are forced to manually decide how data

should be stored. This generally takes the form of creating different pools of storage in an attempt

to match workloads and datasets to their requirements, while not spending exorbitant amounts of

time treating each dataset and workload individually. For instance, the administrator may create

some volumes using expensive, fast disks for performance sensitive applications, while putting user

home directories onto slower, yet reliable, storage. Temporary data may be assigned to a striped

volume with no redundancy to maximize performance while keeping the cost low. Storage pools

work reasonably well when there are relatively few data volumes, users, and applications, but as

administrators are required to handle more, the complex interactions across workloads cause the

difficulty of creating good solutions to grow quickly. Adding datasets and workloads to existing

pools of storage can unintentionally degrade the performance of the existing workloads. Further, as

new datasets are added, their objectives are unlikely to exactly align with the existing storage classes,

potentially causing the administrator to add additional storage pools that must also be managed.

The objective is to have a customized pool of storage for each user/application that provides

exactly the levels of service that are desired, taking into account costs, resource limitations, and

relative importance. Additionally, the administrator would like to be able to treat each pool inde-

pendently (e.g., not think about the e-mail system while configuring the customer database), yet

1

CHAPTER 1. INTRODUCTION 2

have a unified infrastructure for system provisioning, configuration, monitoring, and maintenance.

It is also important to note that the administrator is ultimately interested in the level of service, not

the mechanics of the system’s configuration.

In traditional systems, the administrator is forced to interact directly with the storage system’s

mechanisms. For instance, the administrator must configure groups of disks into RAID volumes,

choosing correct values for parameters such as the RAID level and stripe size. Setting these pa-

rameters is a means to an end — the administrator is actually attempting to create a configuration

that has the proper balance of performance, availability, reliability, and cost (resource consump-

tion). Raising the interface to specifying policies or desires as opposed to the mechanisms used to

implement the policy is an important way of managing system complexity. It removes the specifics

of the underlying hardware from consideration by the administrator. This requires a new way for

the administrator to specify his desires. It also requires the system to automatically map those

requirements to a configuration that meets those desires. It requires a self-tuning storage system.

To ease the burden on system administrators, storage systems must become self-tuning. A self-

tuning system is one that has the ability to shift resources among users and applications dynamically,

based on the current state of the system and applied load. This dynamic allocation of resources

must take into account system objectives and their relative importance. It needs to automatically

respond to problems, such as failures, and take action to protect data until the problems can be

repaired. In general, system administrators appear willing to let the storage system take on some

of these tuning tasks. Telford et al. [2003] studied database administrators and their acceptance

of automatic tuning. Broadly, they found that database administrators welcomed suggested tuning

actions, and the part-time administrators were the most receptive, including allowing the system to

make automatic adjustments.

To combat the complexity and expertise required to properly set the storage mechanisms, re-

searchers have proposed using goal-based specifications [Anderson et al., 2003; Borowsky et al.,

1997; Gelb, 1989; Wilkes, 2001]. These specifications free the administrator from the details of

setting individual mechanisms, instead, allowing him to specify the desired levels of system metrics

for each dataset and workload. Automated tools [Alvarez et al., 2001b; Anderson et al., 2002, 2005]

could then be used to design and configure storage systems that meet these requirements.

While goal-based specifications raised the level of expressiveness, they still lacked the ability

to express trade-offs between the many factors that impact storage costs and benefits [Kephart and

Walsh, 2004]. Goal-based specification assumes the administrator can determine the exact level of

each system metric that produces the proper balance of cost and benefit to provide the most cost-

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Spectrum of expressiveness –Moving frommechanism-based spec-

ification to goal-based specification allowed the creation of tools for provisioning

storage systems to meet fixed requirements. Moving from goal-based to utility-

based specification allows tools to design storage systems that balance their capa-

bilities against the costs of providing a particular level of service. This allows the

systems to better match the cost and benefit structure of an organization.

effective storage configuration. Clearly, this is a difficult, if not impossible, task for the administrator

since costs are influenced by the mechanisms and hardware that goals try to insulate him from. To

combat this, a method of specification that can encapsulate the trade-offs is necessary.

Using utility functions, a system administrator can express the costs and benefits of potential

storage configurations in a manner that the design, configuration, and tuning of storage could be

automated. Figure 1.1 shows the progression of expressiveness from mechanisms, through goals, to

utility functions. Utility functions add the ability to make trade-offs across system metrics to create

cost-effective storage configurations.

The remainder of this chapter presents and explains the thesis statement. It also provides an

overview of the rest of the document, outlining the experiments and results that demonstrate the

validity of the thesis statement.

1.1 Thesis statement

The focus of this work centers on the following statement:

Utility functions are a promising method for guiding the design and optimization

of a distributed, self-tuning storage system.

In the subsequent sections, the details of this statement will be broken into parts and explained,

framing the problem scope and the actions necessary to demonstrate the overall statement’s validity.

CHAPTER 1. INTRODUCTION 4

1.1.1 Distributed storage system

The architecture used as a context for experimentation is that of CMU’s Self-∗ Storage prototype,

Ursa Minor [Abd-El-Malek et al., 2005]. Ursa Minor is a prototype versatile, cluster-based storage

system, composed of clients, storage nodes, and a metadata service. Clients contact the metadata

service to determine the location of data objects and to obtain access permission. They are then able

to directly communicate with the system’s storage nodes to read and write data. This type of ar-

chitecture provides a large amount of incremental scalability through the addition of storage nodes.

With these scalability benefits come an associated increase in the number of configuration options.

Instead of creating fixed volumes of storage, like would be found in traditional, monolithic arrays,

the Ursa Minor architecture supports arbitrary m-of-n data encoding schemes for objects. This al-

lows each data object to have a customized level of fault tolerance and choice of storage nodes,

providing the ability to customize the properties of the storage system to the needs of applications

and datasets.

Figure 1.2 demonstrates the gains that are possible via customization and the breadth of trade-

offs that are possible. The graph compares four different workloads using data distributions that

are customized to each, as well as an additional one-size-fits-all data distribution. By creating an

appropriate data distribution, a dataset such as “Scientific” can be customized for high throughput

at the cost of availability and reliability, or an “OLTP” dataset can be tuned for high availability and

small I/O requests. These very apparent benefits from customization show that there are significant

tuning options that have a measurable impact on the service provided. This makes the Ursa Minor

architecture a good platform to use for investigating the use of utility to guide tuning.

1.1.2 Guiding design and optimization

A self-tuning storage system is able to automatically make adjustments to its configuration without

the direct intervention of a system administrator. With such a system, it must be possible to both

design a good initial configuration and to provide a framework that allows automatic optimizations

to proceed in an intended manner. These two requirements are examined separately.

Initial provisioning and configuration is the ability to begin with a set of requirements, goals,

and constraints and produce a storage system that meets them in a cost-effective manner. Framing

this in a cluster-based architecture, the datasets, clients, and I/O workloads are defined, and the task

is to instantiate some number of storage nodes and assign the datasets to them. A good provision-

CHAPTER 1. INTRODUCTION 5

Trace OLTP Scientific Campus
Workloads

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

B
a

n
d

w
id

th
 (

M
B

/s
)

Trace distribution
OLTP distribution
Scientific distribution
Campus distribution

Generic distribution

Figure 1.2: Matching data distribution to workload – This graph shows the

benefit of customizing a storage configuration to the needs of the application. It

shows the performance of four workloads run on Ursa Minor as a function of the

data distribution. For each workload, five distributions were evaluated: the best

distribution for each of the four workloads and a good “middle of the road” choice

for the collection of workloads. Although the “Scientific” data distribution pro-

vided better performance for the “Trace” workload than the “Trace” distribution,

and the “Campus” data distribution provided better performance for the “OLTP”

workload than the “OLTP” distribution, these distributions failed to meet the re-

spective workloads’ reliability requirements. These numbers are the average of 10

trials, and the standard deviations are shown as error bars. This graph originally

appeared in Abd-El-Malek et al. [2005].

ing solution produces a set of hardware (storage nodes) and assignments (data distributions) that

maximize (or minimize) some metric.

Once a system has been configured and put into service, changes to the resources, objectives,

or workloads can cause the system configuration to become inadequate. This could be caused

by changes in system resources, such as the addition or removal of resources (e.g., from storage

nodes failures, repair, or system upgrades). Additionally, system objectives can change over the

lifetime of a dataset. For instance, a dataset could be removed from active service and instead be

maintained for archival purposes. Workloads can also change over time, changing intensity or I/O

pattern as the popularity or usage pattern of the associated application changes. These changes may

require adjustments to the storage system’s configuration, and a self-tuning system should be able

to make these changes without the direct intervention of a system administrator. Critical to this

CHAPTER 1. INTRODUCTION 6

task is determining potential new configurations that better meet the (new) system objectives and

controlling the migration of data from the old to the new configuration. The choice of whether to

optimize, and how fast, is frequently a trade-off between the current level of service and the level of

service at some future time. A technique that is able to control a self-tuning system should be able

to automatically navigate these trade-offs.

1.1.3 Expressing objectives via utility

Utility is a value that represents the desirability of a particular state or outcome. This concept is

common in both economics [Browning and Zupan, 1996] (to explain consumer preferences) and

in decision theory [Keeney and Raiffa, 1993] (as a method for weighing alternatives). The main

feature used here is its ability to collapse multiple objectives (e.g., performance and reliability) into

a single axis that can be used to compare alternatives.

To use utility to guide storage tuning, it is necessary to have a utility function that is able to eval-

uate a potential storage configuration and produce a single value (its utility) that can be compared

numerically against other candidate configurations. The optimal configuration is the one with the

highest utility value. The utility value for a configuration should be influenced by the system metrics

that are important to the administrator. For example, configurations with high performance would

have higher utility values than those with low performance; likewise for availability and reliability.

Examining system metrics in isolation, one could use the actual metric (or its negation or recip-

rocal) as the utility value. For example, setting Utility = Bandwidth would cause the provisioning

system to prefer systems with high bandwidth over those with low bandwidth. The goal of utility,

however, is to combine all relevant systemmetrics into a single framework. The various metrics can-

not simply be summed; they must be combined in a manner that captures their relative importance.

The different metrics must be normalized or scaled relative to each other. Experience suggests that

the easiest method for normalizing these different metrics is via a common scale that has meaning

for each metric. One such scale is money (e.g., dollars). Since each storage metric has an effect on

the service provided, it affects an organization’s business. This business impact can be expressed in

dollars. For example, performance (throughput) affects the number of orders per second that an e-

commerce site can handle, and a loss of availability causes lost business and decreased productivity.

By expressing each source of utility (e.g., performance, data protection, and system cost) in dollars,

they can be combined easily. It is important to note, however, that the “sources” or components

of utility do not necessarily have a one-to-one correspondence with system metrics. For example,

CHAPTER 1. INTRODUCTION 7

the revenue of a business may be a source of utility, but that revenue may be a function of both

performance (throughput) and availability.

1.2 Tool overview

As a part of evaluating the use of utility for storage provisioning and tuning, a pair of tools were

created. The first, an automated provisioning tool, uses utility to create an initial storage system

configuration. The second, a dynamic tuning tool, uses utility to evaluate different tuning alterna-

tives. The two tools share most of their architecture and source code but differ in the parameters

they configure and how they generate solutions. This section describes the high-level architecture

of these tools, placing the following chapters in context.

Figure 1.3 presents a graphical overview of the architecture of the provisioning tool. It tool has

three main components. The first component is a set of system models that analyze a prospective

system configuration to produce a collection of high-level system metrics. The models use low-level

configuration information such as the m, n, and locations of each dataset, and they produce system

metrics such as the number of IO/s each workload would complete. The second component is the

utility function, which calculates the utility of the configuration using the high-level system metrics.

The utility function encapsulates the system administrator’s objectives for the system, workloads,

and datasets. The third component of the tuning loop is the solver. The solver uses the utility values

to guide the optimization, producing new configurations based on the results of previous analyses.

The dynamic tuning tool leverages the provisioning tool to evaluate potential new storage sys-

tem configurations. It also uses this framework to evaluate the expected level of utility during

reconfiguration and to optimize the order and speed of the optimization steps.

The system models, and the metrics that they produce, are discussed in detail in Chapter 3.

Utility and utility functions are described in Chapter 4. The two different solvers are presented

separately. Chapter 5 discusses the solver used for utility-based storage provisioning, and Chapter 7

describes the solver used for data migration.

1.3 Overview of rest of document

Following the criteria of Section 1.1.2, the document is organized around the two main tasks of

storage provisioning and dynamic tuning. First, Chapter 2 provides background on previous provi-

CHAPTER 1. INTRODUCTION 8

Figure 1.3: Utility-based provisioning loop – The solver produces candidate

system configurations. The system models annotate the configurations with sys-

tem, workload, and dataset metrics. The utility function uses the administrator’s

preferences to rank the annotated configurations by assigning a utility value to

each.

sioning and automated tuning approaches. It also discusses the Ursa Minor architecture and how it is

modeled in this work. Chapter 3 presents various system models used to produce the system metrics

that form the building blocks for utility functions. Chapter 4 describes utility in more detail, high-

lighting other uses of utility in computer systems and discussing how an administrator might create

utility functions for his environment. Chapter 5 describes the implementation of several solvers that

are used to generate and compare storage configurations for automated provisioning.

The building blocks of models/metrics, utility functions, and the solvers are used to examine

storage provisioning in Chapter 6. This chapter highlights some of the benefits of using utility for

storage provisioning. It shows how cost-effective solutions can be created using utility functions

and how these solutions may defy the conventional rules of thumb for manual provisioning.

Chapter 7 describes how utility can be used to decide whether new configurations should be

implemented and how fast data should be migrated. It discusses examining utility over time to

determine the proper trade-off of current versus future utility and how this can be used to control

data migration. Chapter 8 provides some examples of dynamic tuning using utility. It highlights the

impact of the system administrator’s ROI time horizon on tuning decisions and shows how different

CHAPTER 1. INTRODUCTION 9

system scenarios are optimized. Chapter 9 presents the conclusions and discusses future work to

help move these techniques toward commercial viability.

Chapter 2

Background

Managing storage is expensive. In 2000, Gartner Consulting estimated that 55% of the TCO for a

server could be attributed to the storage [Gartner Consulting, 2000]. In the same report, they claim

that managing local storage costs just under $23,000 per TB-yr. It also estimated that management

of LAN-based storage required, on average, 10 hr per GB-yr. In a 2003 interview [Gray, 2003], Jim

Gray provided some estimates for the cost of managing storage, saying that his “Wall Street friends”

claim it costs them $300,000 per TB-yr to manage storage and that they have over one administrator

per 10 TB. He also estimated that Google and the Internet Archive have one administrator per

100 TB. Even though these estimates vary by several orders of magnitude, all indications are that

the cost of managing storage is high.

One reason for the expense of managing storage is how vital it has become to the proper func-

tioning of the enterprise. A 1996 survey of the cost of downtime [Contingency Planning Research,

1996] estimated that the financial impact to companies ranged from $14,000 to over $6.4 M per

hour. They also cite data from the University of Texas that indicates 94% of businesses that suffer

a catastrophic data loss go out of business within two years. In an updated study from 2001 [Eagle

Rock Alliance, Ltd., 2001], over 50% of the companies surveyed responded that downtime costs

them over $50,000 per hour, and 8% of respondents placed their cost at over $1 M per hour. With

the high cost of managing storage and the penalties for doing it poorly, it is no surprise that there is

a push toward improving manageability.

This chapter begins with a high-level survey of storage management research. It then describes

the architecture and system that provides the context for this work.

10

CHAPTER 2. BACKGROUND 11

2.1 General related work

While much of the related work is discussed as the topics are presented, this section presents some of

the work that has set the stage for the investigation presented here. It discusses previous approaches

to specifying system objectives as well as tools and approaches that have been used to both provision

and tune storage systems.

2.1.1 Specifying objectives

To allow a system to effectively provide automated configuration or adaptation, it must be possible

for the administrator to communicate his desires to the storage system. These desires provide a

target, or goal, for the system to achieve. Gelb [1989] notes that, in the 1970’s and 80’s, the increase

in customer demands on storage brought about the need for customers to be able to logically express

their storage needs. This need was the main drive behind IBM’s System-Managed Storage effort.

SMS was an attempt to raise the level of specification of a storage system above the low-level

configuration settings that implement a storage service to one that describes what the service should

provide. Borowsky et al. [1997] and Shriver [1999] defined the Attribute Managed Storage concept

that has guided a large amount of work from HP Labs. It framed storage specifications as a language

of constraints that a storage service must meet in order to satisfy the end user or application.

Specifying storage objectives can also be viewed as a direct translation of work on specifying

quality of service (QoS) specifications that have been an active research area in systems and net-

works. For example, QML [Frølund and Koistinen, 1998] attempted to create a QoS specification

language for use in designing software systems. Wilkes [2001] developed a language, called Rome,

specifically for communicating storage designs and goals.

Attempts to separate the specification of storage objectives from the mechanisms that implement

them have not solved the problem of administrators being able to specify their objectives effectively.

Determining a suitable set of objectives is difficult in many cases, because even the high-level

metrics of a storage system are still far from the true metrics that interest the administrator and end

users. Anderson et al. [2003] presents a set of ideas that could help ease management, including

not only application-level specifications, but also using analogies to allow administrators to make

specifications based on current systems, in a relative manner (e.g., half as large or twice as fast).

Another difficulty is the separation of costs from benefits. Determining a proper set of “require-

ments” requires considering the costs involved in meeting them. There are few environments where

the costs are either unimportant or so small as to be negligible. In situations where costs need to be

CHAPTER 2. BACKGROUND 12

considered, asking for a fixed set of service requirements is not an appropriate solution because the

requirements are shaped by the costs necessary to meet them. This is one of the benefits of moving

toward a method of specifying storage objectives based on utility. Recently, there has been work on

designing cost-effective disaster recovery solutions, trading off solution costs with expected penal-

ties for data loss and downtime [Gaonkar et al., 2006; Keeton et al., 2006, 2004]. This work has

effectively used utility to trade off the costs of data protection mechanisms against the penalties

when data is lost, creating minimum (overall) cost solutions for disaster protection. These results

lend support to the notion of using business costs (and benefits) as the basis for evaluating storage

solutions.

2.1.2 Previous tools and approaches

Many provisioning and tuning approaches have been concerned only with performance. This is a

natural place to start because more performance is generally better than less, no matter the current

level. However, there is an unmentioned assumption in much of the work that the performance

optimizations will not affect other metrics, such as data protection. Choosing just a few examples

from an large collection, Wolf [1989] describes the Placement Optimization Program (POP) which

is designed to solve the “File Assignment Problem.” POP used a two-stage approach, first deter-

mining a target access rate for the disks, then assigning files to those disks to best match the target

I/O rates. Weikum et al. [1990] describe a system called FIVE that spreads data across a number

of disks in a flexible manner, allowing the system to balance I/Os with the objective of improving

performance. Their algorithms were designed to both balance I/O load across disks and maintain

good sequential performance for files. The AutoRAID system, described by Wilkes et al. [1996],

dynamically moves data between mirrored and RAID-5 storage based on the amount of system free

space and the recent access history.

Rule-of-thumb approaches to storage allocation are also common. For example, Loaiza [2000]

presents a scheme called “Stripe And Mirror Everything” or “S.A.M.E.” for configuring Oracle

databases. Instead of attempting to assign storage resources to each database volume, he advocates

spreading data evenly in an attempt to provide a consistent (and hopefully high) level of performance

to all datasets. For this, he proposed a two stage approach. First, use mirroring for all storage to

provide adequate data protection. Second, stripe all data across the available hardware to ensure

the load is spread evenly. Another example is the creation of “storage classes” [St.Pierre, 2007]

whereby the administrator creates broad categories for data such as “mission critical” or “archival”

CHAPTER 2. BACKGROUND 13

and assigns datasets to pools of storage that are (hopefully) provisioned to match the objectives of

these categories. One problem with these approaches is that the intended level of service may differ

significantly from the actual, and there is little feedback to recognize and correct the problem. For

example, a “high performance” storage class may initially meet expectations, but as more datasets

and high-intensity workloads are assigned to the storage pool, its performance will inevitably de-

grade.

One method of attempting to automate the rules-of-thumb-type approach to storage tuning is via

Event-Condition-Action (ECA) rules. These systems are based on a set of rules that are triggered by

some system state or event. The rules then apply a particular action to adapt to current conditions.

Unfortunately, ECA systems tend to be difficult to implement, because the potential for rule conflicts

grows with the number of rules. Additionally, while each rule may be simple, the complex behavior

produced by the collection may not be as intended. Polus [Uttamchandani et al., 2004] was an

attempt to apply an ECA model to storage optimization, using a learning framework to assist in

creating the rules that guide the tuning.

Automating storage provisioning allows creating designs that are specifically tailored to the ob-

jectives of the applications and datasets. For example, Minerva [Alvarez et al., 2001b] divided the

provisioning task into two phases. The first phase determined the proper encoding for the data (i.e.,

whether it should be placed on a RAID-10 or a RAID-5 volume). The second phase packed the

datasets into the appropriate volume type, accounting for capacity and other resource limitations.

As a response to limitations caused by the two-phase process of Minerva, Ergastulum [Anderson

et al., 2001b] was created. It used a series of bin-packing heuristics to place datasets onto stor-

age volumes. The authors showed that it generally produced better storage designs (using less

hardware) and accomplished this much quicker than Minerva. Ergastulum served as the solver for

Hippodrome [Anderson et al., 2002], which iteratively refined storage designs via a tuning loop

that instantiated and measured successive designs. Ergastulum was later renamed the Disk Array

Designer and discussed in detail by Anderson et al. [2005].

The most closely related work investigated automatically creating data protection configurations

to minimize the expected costs to an organization in terms of both the cost of failure (in outage and

data loss penalties) and the cost of the data protection system itself. Keeton and Wilkes [2002]

developed a detailed vocabulary for expressing data protection needs and characteristics. This vo-

cabulary was then used for “what-if”-type exploration of the design space [Keeton and Merchant,

2004] and as the basis of an automated data protection design tool [Keeton et al., 2004]. These

techniques were further extended to automate failure recovery [Keeton et al., 2006] and to work in

CHAPTER 2. BACKGROUND 14

multi-application environments [Gaonkar et al., 2006]. This body of work used utility, defined as

the expected total cost of data protection (failures and the protection thereof) as the objective for

optimization. This utility function incorporated the administrator’s objectives via the use of two

penalty rates. The “outage penalty rate” was defined as a cost penalty that accumulates during the

time that a dataset is unavailable, and the “loss penalty rate” was a cost penalty based on the amount

of recent updates that are lost during a failure. Both were expressed as a cost per unit of time (e.g.,

dollars per hour).

While this dissertation concentrates on a different area of storage provisioning (provisioning

and tuning of the primary storage system), it extends this previous work in several ways. The ad-

ministrator’s preferences can be specified in a more general way, via a set of functions. This method

for specifying utility allows more flexibility in representing the cost structure of the particular target

environment. For example, it allows storage metrics to be combined, such as to express revenue as

a function of both performance and availability. It also directly permits functions of storage system

metrics, such as the time required to scan through a dataset being proportional to the reciprocal of

bandwidth. See Section 4.3.1 for specific examples. This same utility framework can be used to

add external constraints, such as a limited budget, to the optimization. While previous work could

potentially incorporate this as additional constraints in the optimization, there is value to keeping

all of the administrator’s preferences within the same framework. The move to supporting more

general expressions of utility required a different optimization technique than the Mixed Integer

Programming used by Keeton et al. [2004]. Section 5.4 presents a solver based on a genetic al-

gorithm. Gaonkar et al. [2006] also found it useful to use a genetic algorithm for designing for

multiple applications, and Keeton et al. [2006] used one for ordering recovery operations.

The tuning portion of this dissertation is most closely related to the use of utility for scheduling

computation in the face of deadlines. This previous work constructed utility functions that decayed

as tasks were delayed [Irwin et al., 2004], and used utility to express the desire to have a group

of computational jobs complete together [AuYoung et al., 2006]. While both of these had a time

component to their expression of utility, this dissertation introduces the notion of using a discount

rate to balance the current and future benefits and costs of data migration.

2.2 Storage architecture

The desire for storage scalability has pushed researchers to look toward storage clusters. Storage

clusters are composed of a (potentially) large number of individual storage nodes or servers that act

CHAPTER 2. BACKGROUND 15

together to implement a larger storage service. The original motivation for storage clusters such

as Petal [Lee and Thekkath, 1996], AFS [Howard et al., 1988], xFS [Anderson et al., 1996], or

NASD [Gibson et al., 1998] was the large amount of scalability that could be gained by allow-

ing servers to cooperate. More recently, there has been an interest in “brick-based” storage which

differs mainly in the characteristics of the individual node and the dynamic nature of the system.

Brick-based storage systems, such as FAB [Saito et al., 2004], Kybos [Wong et al., 2005] and Ursa

Minor [Abd-El-Malek et al., 2005], tend to use larger quantities of smaller storage nodes (bricks). In

some cases, such as FAB and Ursa Minor, they place an emphasis on using commodity-class com-

ponents to reduce the cost of the system while leveraging the large number of components to provide

redundancy as well as array-like performance and data protection. The notion of cluster-based stor-

age is also appearing in commercial products. For example, Network Appliance’s GX [Eisler et al.,

2007] system can be traced back to the AFS project. The Google File System [Ghemawat et al.,

2003] is a massive storage system, with some similarity to NASD, used by Google to store search

and user data. There are other examples as well.

One of the more interesting aspects of cluster-based storage is the large number of tuning pos-

sibilities that it presents. Traditional arrays are generally limited in the data distributions that they

allow (e.g., limited data placement and a few RAID levels), but cluster-based approaches tend to

provide more varied options, including arbitrary m-of-n erasure codes for data protection. This

increase in the number of configuration options has the potential to increase the difficulty of man-

agement, making the architecture a good choice for study.

2.2.1 Ursa Minor architecture

Ursa Minor [Abd-El-Malek et al., 2005] is a prototype versatile, cluster-based storage system from

the Self-∗ Storage [Ganger et al., 2003] project. Self-∗ storage systems are designed to be self-

managing, and Ursa Minor is the first step toward that goal. The prototype incorporates much of the

versatility and mechanisms that will be useful for a system that automatically adapts to changing

environments. The system presents an object-based interface, similar to that of the NASD [Gib-

son et al., 1998] project. It allows clients to directly access data objects from storage nodes after

receiving location information and permission from a metadata service.

The storage nodes are envisioned as storage “bricks.” They are typically realized with PC-

class hardware, processing, and memory and from one to one dozen disks. The notion of a storage

“brick” arises because they are small, self-contained entities that can be assembled to form a larger

CHAPTER 2. BACKGROUND 16

storage system. Storage nodes internally handle data allocation and placement, presenting a block-

addressed object interface for external access. Each block is addressed by its object-id and a block

number. The blocks hold a variable amount of data and must be read and written as a unit.

The metadata service controls access and maintains location and encoding information for each

object. Each object’s metadata contains one or more slice descriptors that describe the data distri-

bution for an extent of the object. A data distribution is composed of a data encoding, describing

how a data block is divided into fragments, and location information, which lists the storage nodes

that hold fragments for the data blocks in the slice (extent).

Clients Clients access data by first contacting the metadata service and retrieving the appropriate

slice descriptors for the object. Once they possess the metadata for an object, clients may directly

interact with the storage nodes to read and write. For a write operation, the client breaks the data

block into fragments as specified in the slice descriptor’s encoding information. Then, it sends the

fragments to the storage nodes listed in the location information. For reads, data fragments are

retrieved directly from storage nodes and decoded by clients to recover the original data block.

Read/write protocol The PASIS protocol [Goodson et al., 2004] is used for data transfers between

clients and storage nodes. The protocol provides consistent data writes across multiple storage nodes

in the presence of concurrent operations from multiple clients. The PASIS read/write protocol is an

optimistic protocol that resolves conflicts caused by concurrent writers when data is subsequently

read. This eliminates much of the overhead to providing data consistency, but it relies on storage

nodes that are able to version the data.

The PASIS protocol is actually a family of protocols that can be adapted for different system

environments. The protocol can be configured for either synchronous or asynchronous operation.

The former allows more efficient operation, because the response time for requests is bounded,

while the latter has the benefit that its correctness does not rely on storage nodes to respond within a

strict time period. Asynchronous operation prevents overloaded servers and network partitions from

interfering with the correct operation of the system, but this resiliency typically comes at the cost of

increased communication for each operation. The protocol also allows a choice of the quantity of

storage node failures to tolerate as well as the type of those failures. The protocol can tolerate up to

t total failures, and up to b of those may be Byzantine. The remaining failures, t−b, must be benign

(e.g., crash-only) failures. The modeling and evaluation in this dissertation is concerned only with

a synchronous timing model and crash failures (i.e., b = 0).

CHAPTER 2. BACKGROUND 17

The encodings for data blocks use erasure codes, wherein a data block is divided into n frag-

ments when it is written, and any m of those fragments can be used to recreate the original data

block. The encoding parameters, n and m, are chosen to coincide with the read and write quorums

of the PASIS protocol. Bounds on the number of fragments that must be read or written for a given

level of fault tolerance are described in Goodson et al. [2003]. For the specific protocol configu-

ration used here, data is written to n storage nodes, where n = m+ t, and m is restricted to values

greater than or equal to one. Using values for m that are larger than one allow more space efficient

data encodings at the cost of communicating with more storage nodes and additional encode/decode

computation for each I/O operation.

The design of UrsaMinor contained the notion of specifying more storage nodes (data locations)

for a given slice than the minimum of n. With a larger list, blocks could be stored on different

subsets of size n, most likely by storing fragments on n consecutive nodes in this list of l storage

nodes, rotating which storage node receives the first fragment based on the block number within

the slice. For example, an encoding may be specified as 2-of-3 declustered across 4 with the list of

storage nodes containing storage nodes sn1 through sn4. The first block would be stored on nodes

sn1, sn2, and sn3 using a 2-of-3 scheme. The second block would be on sn2, sn3, and sn4. The

third block would reside on sn3, sn4, and sn1. This rotation across a larger set of nodes allows the

number of storage nodes for a particular block to be limited, helping I/O latency, while allowing a

larger number of nodes to serve the object as a whole, helping bandwidth.

To simplify the modeling effort, the model used in this work differs slightly from the one used

in Ursa Minor. While Ursa Minor rotates blocks across the set of l storage nodes, the modeling

for this work assumes that each block is stored on a random subset. This should have a minimal

impact on performance, but it does affect the availability and reliability calculations. By assuming

an arbitrary, random subset of the l storage nodes, it is likely that any loss of n−m of the storage

nodes from the set of l would result in a loss, because for a large object, it is reasonable to expect

that there is at least one block that shares any subset of size n of the l storage nodes. With a rotation

model, this is not necessarily the case.

The choice of encoding parameters impact the access characteristics of the dataset. How these

relationships are modeled is discussed in Chapter 3, but to provide some indication of the complexity

of choosing a good data distribution, Table 2.1 shows how various workload and dataset metrics are

affected by changes to these encoding parameters.

CHAPTER 2. BACKGROUND 18

Table 2.1: General effects of encoding parameters on system metrics – This

table shows the general effects on various system metrics caused by increasing the

data encoding parameters, m, n, or l. The magnitude of these effects vary consid-

erably and are difficult to quantify without detailed models. Making the proper

encoding choice manually is very difficult because changing a single parameter

affects nearly all the metrics. A system that is able to choose these parameters

automatically must be able to make trade-offs across metrics.

Metric m⇑ n⇑ l ⇑

Availability ⇓ ⇑ ⇓
Reliability ⇓ ⇑ ⇓
Capacity consumed ⇓ ⇑ –

Read bandwidth ⇓ ⇑ ⇑
Read latency ⇑ – ⇓
Write bandwidth ⇑ ⇓ ⇑
Write latency – ⇑ ⇓

Storage nodes The storage nodes used for Ursa Minor are based on the storage server originally

built for the Self-Securing Storage project [Strunk et al., 2000]. The benefit to using this as a starting

point was its efficient versioning file system [Soules et al., 2003]. The storage server was used for

the PASIS project. From there, it was modified for use in Ursa Minor. It presents an object-based

interface to clients and internally manages allocation and data placement.

Data migration Ursa Minor supports the online migration and re-encoding of data. The migration

is supervised by the metadata service, and it relies on a combination of the foreground workload

and the migration coordinator to move the dataset from the old encoding and location to the new.

Migration is initiated when the metadata service installs back-pointers at the new data location.

These back-pointers contain the necessary metadata to locate data in the old data distribution. Once

the back-pointers are installed, all clients are redirected to the new dataset location. At this point,

writes by the foreground workload use the new location and encodings, helping the data migration.

Reads first attempt to retrieve data from the new location, but may retrieve a back-pointer instead

of data if the requested block has not yet been migrated. The client can follow this back-pointer to

retrieve the data from the old location.

The migration coordinator is responsible for moving the bulk of the data. It acts much like a

CHAPTER 2. BACKGROUND 19

storage system client, reading data from the old location and writing to the new. By using special

time stamps within the PASIS protocol, the actions of the coordinator are guaranteed to not overwrite

data blocks already migrated by the foreground workload. Abd-El-Malek et al. [2005] provide the

details of this time stamp handling.

2.2.2 Modeling Ursa Minor

This dissertation uses the architecture of Ursa Minor as a framework for evaluating the use of utility

functions for guiding storage provisioning and tuning, but it does not attempt to exactly replicate the

details and complexity of the prototype system. The modeling is designed to be complex enough

for a thorough evaluation of utility while not devoting an exorbitant amount of effort to system

modeling. Toward this end, the analysis neglects the metadata service and metadata operations,

instead focusing solely on the storage system data path.1 The model contains arbitrary numbers of

clients and storage nodes, both of which may be composed of heterogeneous components. Datasets

correspond to objects within the system, but to make the modeling more tractable, datasets are

assumed to correspond to volumes (i.e., relatively few and of GBs in size) as opposed to files as

in the Ursa Minor prototype. Clients and storage nodes are assumed to be attached by a network

capable of full port bandwidth between any two endpoints. Workloads are assumed to execute on a

single client, accessing a single dataset. However, a client may have many workloads assigned to it,

and a dataset may receive I/Os from many different workloads.

Each of these components, clients, workloads, datasets, and storage nodes are described by a set

of attributes. For example, a storage node has a defined capacity, network bandwidth, and service

rate for its disk. Several types of each component may be defined and used within the same storage

system. Table 2.2 lists the attributes that are used to define each component.

The main parameters that are available for tuning are each dataset’sm and n encoding parameters

as well as the set of storage nodes on which it resides (the size of this set is the parameter, l). For

provisioning, the system chooses a collection of, potentially heterogeneous, storage nodes to hold

the datasets. It also chooses the encoding parameters for each. Additionally, it has the ability to

throttle the foreground workloads to limit their resource usage.

For data migration, the system is given an initial configuration, and it determines a new config-

uration as well as the ordering of dataset migration and the speed of each of those migrations based

1Given the large size of the datasets (e.g., volumes) that are the focus of this work, the metadata service would not be

expected to significantly affect system performance.

CHAPTER 2. BACKGROUND 20

Table 2.2: Main components and their attributes – This table lists each of

the main component types used in the system description for the provisioning

tool. With each of the component types is the set of attributes that define their

properties. Each instance of a component (e.g., each storage node) may have

different values for these attributes, allowing the tool to evaluate heterogeneous

configurations.

Client

CPU delay CPU time for data encode/decode (s)

Net bandwidth Network streaming bandwidth (MB/s)

Net latency Network propagation delay (s)

Dataset

Size Size of the dataset (MB)

Storage node

AFR Annual failure rate (%)

Availability Fractional availability of the node

Capacity Disk capacity (MB)

Cost Purchase cost ($)

Disk bandwidth Max streaming bandwidth (MB/s)

Disk latency Initial positioning time (s)

Net bandwidth Network streaming bandwidth (MB/s)

Net latency Network propagation delay (s)

Power Power consumption (W)

Workload

I/O size Avg. request size (kB)

MP level Multi-programming level for closed workload

Think time Think time for closed workload (s)

Random frac Fraction of non-sequential I/Os

Read frac Fraction of I/Os that are reads

on utility. To control the speed of migration, the speed of the migration coordinator is controlled

throughout each phase of the migration.

Chapter 3

Storage system models

A utility function specifies the utility value associated with given levels of relevant metrics, such as

the availability, reliability, or performance of the datasets and workloads. To evaluate the utility of

a potential system configuration, it must be possible to estimate the level of each of these metrics.

This is the job of the storage system models.

Storage system models generate, for a given system configuration, a set of one or more met-

rics. The metrics produced by the system models form the building blocks for expressing storage

objectives as utility. For example, to evaluate a throughput objective for a workload, there must be

a performance model that produces a metric corresponding to the throughput of the workload. This

chapter describes the system models that were implemented as a part of this work. Models can be

added and removed easily, creating the ability to add new storage metrics or enhance existing ones.

This, in turn, increases the expressiveness of utility for the administrator.

Table 3.1 provides an overview of the metrics that are used in future experiments. The table

provides a brief summary of each metric as well as the model that is responsible for producing it.

These metrics form the framework for expressing system objectives and creating utility functions.

3.1 Availability

Availability, A(t), is the probability that a dataset can be accessed at some particular time in the

future. Taking the limit of this function as t goes to infinity yields the expected fraction of time

21

CHAPTER 3. STORAGE SYSTEM MODELS 22

Table 3.1: Storage metrics provided by system models – This table lists the

metrics that are added to candidate configurations by the current set of system

models. The table is organized by the component to which the metric refers, and

it lists the model that provides the metric.

Client

CPU utilization (%) Performance §3.5

Network utilization (%) Performance §3.5

Dataset

Annual failure rate (%) Reliability §3.6

Capacity blowup from encoding Capacity §3.2

Fractional availability (%) Availability §3.1

Mean time to failure (hr) Reliability §3.6

“Nines” of availability Availability §3.1

Storage node

Raw capacity consumed (MB) Capacity §3.2

Capacity utilization (%) Capacity §3.2

Disk utilization (%) Performance §3.5

Network utilization (%) Performance §3.5

Power consumed (W) Cost and power §3.3

System-wide

Total capacity consumed (MB) Capacity §3.2

Capacity utilization (%) Capacity §3.2

Total system cost ($) Cost and power §3.3

System power consumed (W) Cost and power §3.3

Management complexity Management complexity §3.4

Workload

Bandwidth (MB/s) Performance §3.5

Throughput (IO/s) Performance §3.5

Request latency (s) Performance §3.5

that the dataset is available [Siewiorek and Swarz, 1982]. The availability model produces a metric

based on this fractional availability number.

Two different models were created, each with a different blend of detail versus speed of evalu-

ation. They both rely on the same input parameters (the fractional availability of individual storage

nodes) and produce the same metrics (the fractional availability of each dataset), making them inter-

CHAPTER 3. STORAGE SYSTEM MODELS 23

changeable. The difference between the two models is how they account for datasets that have more

than one data distribution— a case that occurs during data re-encoding. The “detailed model” prop-

erly accounts for storage nodes that are part of both of the data distributions, while the “binomial

model” assumes independence, potentially underestimating the availability. The binomial model

also assumes all storage nodes involved in a data distribution have the same fractional availability

while the detailed model does not. For both models, individual storage node failures are assumed to

be independent.

Both models produce the same availability metrics. They tag each dataset with a fractional

availability and the corresponding “number of nines.” The fractional availability is a real between

zero and one, inclusive. The number of nines, Av9(a), for a given fractional availability, a, is:

Av9(a) = −log10 (1−a)

As a concrete example, an availability of 0.999 would be 3 nines of availability.

3.1.1 Detailed model

The detailed model was created to accurately capture the dependencies across data distributions for

datasets with multiple data distributions and also to handle data distributions with heterogeneous

storage nodes.

The model examines and calculates the availability of each dataset individually. For each

dataset, it iterates through each data distribution, noting the unique storage nodes used for that

dataset. It then exhaustively examines all combinations of these storage nodes being either up or

down. For example, a dataset may have two data distributions with the first being 1-of-2 on nodes

“sn1” and “sn2,” and the second being 1-of-2 on “sn2” and “sn3.” In this case, the model would ex-

amine all possible states of the storage nodes (23 = 8 possibilities). If, for a given configuration, all

datasets are available, then the dataset is available, and the likelihood of being in that state is added

to the total probability for the dataset to be available. An individual distribution is available as long

as no more than n−m storage nodes are unavailable. In this example, there must be no more than

one failed storage node in either data distribution since they both use a 1-of-2 encoding. Table 3.2

presents the eight possible states from this example and how the dataset availability is calculated.

An advantage of this availability model is that, if multiple data distributions for a dataset share

storage nodes (in the above example, they shared sn2), the calculated availability will account for

the overlap. It also has the advantage that each storage node is examined individually, allowing them

CHAPTER 3. STORAGE SYSTEM MODELS 24

Table 3.2: Detailed availability model example – This shows an example avail-

ability calculation for a dataset with two data distributions. The first distribution,

d1, is 1-of-2 on nodes sn1 and sn2, while the second, d2, is 1-of-2 on sn2 and sn3.

The three storage nodes have individual availabilities of 0.9, 0.9, and 0.95.

sn1 sn2 sn3 d1 d2 Probability

down down down down down –

down down up down up –

down up down up up 0.0045

down up up up up 0.0855

up down down up down –

up down up up up 0.0855

up up down up up 0.0405

up up up up up 0.7695

Availability (sum): 0.9855

to have different component availabilities. In the example above, sn1 and sn2 had an availability of

0.9, while sn3 had an availability of 0.95.

The disadvantage to this model is that it is exponential in the number of storage nodes that con-

tain fragments from a given dataset. In the above example, only three total storage nodes contained

data fragments, so the number of combinations that had to be evaluated was small. A configuration

where a dataset has two distributions, each with ten storage nodes, could have up to 220 ≈ 1 M

combinations. Modern storage arrays regularly incorporate up to fourteen disks in a single RAID

group, so a configuration with ten storage nodes is not unexpected. At such a scale, this model is

impractical, leading to another availability model.

3.1.2 Binomial model

After noting the poor scaling of the above availability model, a less detailed model was imple-

mented. This new model scales better with problem size. It views each data distribution indepen-

dently, and uses a single fractional availability for all storage nodes that are part of a given distri-

bution. These simplifications allow the availability calculation to be viewed as a set of Bernoulli

Trials, where the distribution is available as long as there are no more than n−m failures. This leads

CHAPTER 3. STORAGE SYSTEM MODELS 25

to the following expression:

Availability =
n−m

∑
f=0

(

l

l− f

)

A
l− f
SN (1−ASN) f

In the above equation,
(

l
l− f

)

= l!
(l− f)!· f ! , which is the combination function. The availability is a

sum from zero to n−m failures of the combinations of l− f storage nodes that are available and

f storage nodes that are unavailable. To use this formula, a single availability value must be used

for the set of storage nodes. This value, ASN , is chosen to be the minimum availability of the entire

set of l nodes that hold data fragments. Choosing the minimum value ensures that the resulting

calculation will be a conservative estimate, since there are typically less severe consequences to

errors of this type.

In the example of Table 3.2, d1 would have an availability of 0.99, and d2 would have an avail-

ability of 0.99. These numbers would then be combined to form the availability of the overall dataset

as: 0.99 ·0.99 = 0.9801. Again, this method of combining the data distributions’ availability num-

bers is conservative. To illustrate these two sources of conservatism, consider the true availability

calculation for d2:

AVd2 = 0.1 ·0.95+0.9 ·0.05+0.9 ·0.95

= 0.995

First, we see that the actual availability is 0.995, which is greater than the estimate of 0.99, a result

of using the lower storage node availability number. Second, the dataset availability (using the more

accurate estimate) is: 0.99 ·0.995 = 0.9851. This dataset availability is still less than that produced

with the detailed model because it neglects the overlap of storage node sn2.

3.1.3 Improvements and related models

There are a number of potential improvements that could be made to the above models. For ex-

ample, in both models, independence of storage node failures is assumed, but current research by

Schroeder and Gibson [2007] and Pinheiro et al. [2007] suggest this is not an accurate assumption.

Nicola and Goyal [1990] examined correlated failures across multiversion software, using a Beta-

Binomial distribution as a way to model correlated failures. Another approach would be to attempt

to model the sources of correlated failures such as dependencies on a common network, power, or

CHAPTER 3. STORAGE SYSTEM MODELS 26

physical topology. Asami [2000] looked at a connectivity model with “and/or” nodes as a way of

estimating the availability of data in a large storage system. Obtaining accurate measures of de-

vice availability and the level of correlation can be difficult. Brown and Patterson [2000] suggest

creating availability “benchmarks” via fault injection to quantify system availability, and Douceur

and Wattenhofer [2001a,b] measure and model the availability of 50,000 desktop computers as

part of the Farsite project. Both of these could provide a starting point for creating more accurate

models. AFRAID [Savage and Wilkes, 1996] was a system that sought to trade off availability for

performance by delaying RAID-5 parity updates until idle periods.

Another area of improvement would be extending the availability modeling to include not just

fractional availability but also a measure of frequency and duration of outage. This is particularly

useful for examining penalties for outages because there is both a fixed and a variable component

to the penalties that are incurred. For example, an outage is likely to cause applications to fail, and

there is a non-zero cost (time) to restart them, so while one outage per year of 8.8 hours has the

same fractional availability as a ten minute outage once per week, the penalties can be considerably

different.

3.2 Capacity

Tracking capacity utilization in a storage system is important because it is a limited resource. Stor-

age nodes have a limited amount of raw capacity that can be used to store data fragments. The

capacity model calculates the capacity used on each storage node (in absolute terms and also as a

fractional utilization), the storage “blowup” of each dataset, and the total storage system capacity

used (absolute and fractional). The main use of these metrics by the administrator is to ensure some

minimal amount of space remains free to accept new data (system-wide utilization) and potentially

to charge end users for the capacity they consume (dataset size and blowup). The system also uses

the capacity information to ensure a given configuration is feasible (i.e., the capacity consumed on

each storage node is less than or equal to its capacity).

Calculating the capacity metrics is relatively straightforward, relying on the (raw) size of a

dataset and the data encoding used to store it. The dataset blowup is the ratio of the stored data

size to its raw size. It can have values of one or greater, assuming no compression is used. The

size increase comes from the capacity overhead of storing redundant information as a part of the

data encoding scheme. For example, a 1-of-3 scheme replicates data three times, giving a blowup

CHAPTER 3. STORAGE SYSTEM MODELS 27

of three. The formula for blowup is:

Blowup =
n

m

where m and n are the data encoding parameters.

To calculate the capacity utilization of storage nodes, begin by noting that the total capacity

consumed by a dataset is:

Consumption = Size ·Blowup

= Size ·
n

m

This consumed capacity is divided equally among all storage nodes that hold fragments from this

dataset (l). Therefore, the capacity consumed on a given storage node by a particular dataset (as-

suming the dataset has fragments on this node) is:

NodeConsumption = Size ·
n

m · l

This consumption is summed across all datasets to determine the total usage of each node. In the

case of datasets that have more than one data distribution (due to an in-progress data migration),

the consumption of each distribution is calculated separately and added to the total because all

distributions must be able to store the entire dataset.

The system capacity consumption is just a sum of the usage on the individual storage nodes,

and the fractional utilization is:

SystemCapUtilization =
∑
snodes
i NodeConsumptioni

∑
snodes
i NodeCapacityi

3.3 Cost and power

While cost and power metrics have very little in common, their calculation is very similar, and they

are implemented within the same model. If a storage node holds fragments from a dataset, it is

included in both the cost and power totals for the system. The cost and power metrics are system-

wide metrics, representing the total purchase cost or power consumption of the storage system

(nodes). Storage nodes have attributes, provided in their description, corresponding to their cost (in

dollars) and power consumption (in Watts). The model for power consumption is that the device is

CHAPTER 3. STORAGE SYSTEM MODELS 28

either on or off, with no intermediate power states, and a storage node consumes the same amount

of power regardless of its workload. Since a node that stores data is assumed to be powered, the

total system power metric is created by summing the power attribute from each storage node that

holds a data fragment from one or more datasets. The total system cost is generated in a similar

manner based on the storage node’s cost attribute.

The cost model only sums the device cost for storage nodes that hold data. This is an artifact of

how the system models storage provisioning. Instead of dynamically adding and removing devices,

the system begins at a maximum size, and if any storage nodes are not used in the final configuration,

they are not considered a part of the final design.

3.3.1 Improvements and related models

While the cost of a storage node is an all-or-nothing metric, real-world power consumption is not.

Devices consume varying amounts of power based on their load and potentially their configuration.

Adding this to the power model would provide the potential to automatically influence or configure

the device’s power consumption to maximize utility. As an example, systems such as Hiberna-

tor [Zhu et al., 2005] or PARAID [Weddle et al., 2007] try to configure storage systems to minimize

power consumption while still meeting performance goals.

3.4 Management complexity

The complexity of a storage system’s design influences the ease with which it can be managed.

For example, an administrator can easily reason about a simple design with few components and

determine the impact of an outage or system change. As a design gets more complex, it may become

more efficient, but it also becomes more difficult to manage because the administrator may have

difficulty remembering how individual devices are configured or what data they store. This is an

important consideration since, for the foreseeable future, some tasks will continue to be performed

manually by the system administrator. A good metric for management complexity is difficult to

define, but the impact of complexity on the administrator’s time should not be neglected. As a

proxy for overall complexity, a metric based on system configuration symmetry was created.

The system asymmetry metric is an integer, greater than or equal to one, describing the total

number of unique storage node configurations that exist in the system. This model defines a storage

configuration as the union of both the storage node description and the data distributions that it

CHAPTER 3. STORAGE SYSTEM MODELS 29

Table 3.3: Asymmetry model example – This table shows a storage system with

six storage nodes (of two different types) and three datasets. Each row denotes

a single storage node and indicates the datasets whose fragments reside on that

storage node. The final column indicates the “symmetry class” for that configured

storage node. For two storage nodes to be considered the same, they must be of

the same type and store fragments from the same datasets. In this example, the

storage system has an asymmetry value of four.

Node type ds1 ds2 ds3 Symmetry

A × a

A × a

A × × b

B × × c

B × d

B × × c

Asymmetry: 4

stores. For two configured storage nodes to be considered the “same” for calculating the asymmetry

metric, they must be of the same type and store fragments from the same datasets. Table 3.3 shows

an example storage configuration with six storage nodes and an asymmetry value of four.

3.4.1 Improvements and related models

Measuring management complexity as the number of distinct storage node configurations is rather

naive. Its presence in this work is more to raise the issue of complexity than to provide a definitive

solution for balancing it with other system metrics. The inspiration for some notion of configuration

or topology symmetry came from Appia [Ward et al., 2002], an automated SAN designer. The

authors found that they could quickly create SAN designs that were considerably less expensive

than those created by hand. A major difference between the two, however, is that the manual designs

tend to be symmetric. While this obviously helps the human designer in creating the initial design,

it is also likely to benefit the system administrator tasked with maintaining the system. Finding the

proper balance between system configurations that are easier to manage versus cheaper to purchase

is an area that needs further research.

Measuring “management complexity” is difficult. There are many criteria that could affect

the manageability of a system, and the model presented here utilized only one — distinct storage

CHAPTER 3. STORAGE SYSTEM MODELS 30

node configurations. Even with this simple model, it is difficult to assess how this metric should

be incorporated into configuration trade-offs. Two configurations are easier to manage than seven,

but, to be useful, this metric needs to be compared and weighed against system performance, cost,

and data protection. Due to the lack of an easily quantifiable way to make these trade-offs, the

asymmetry metric is not used in the utility experiments. Even though it may be difficult to use

in making trade-offs, it may still prove useful as a constraint, to limit the storage configuration’s

complexity.

3.5 Performance

A storage system’s performance is of significant concern to both system administrators and end

users. The performance of a workload is described by a family of metrics, and each metric in that

family is important to particular classes of workloads. The metrics analyzed by this performance

model related to workloads include:

Request latency: The latency of a request is the time from when the request in generated at the

client until the response(s) are received from storage nodes. Certain classes of workloads,

such as online transaction processing (OLTP), tend to be latency sensitive. These applications

typically have end users working interactively with the application, and they are forced to wait

until storage requests complete before they can proceed.

Bandwidth: The bandwidth is the rate at which data is stored and retrieved from the storage system,

measured as the amount of data transferred over some time frame (e.g., in units of MB/s).

Bandwidth is important for data processing applications that must stream through a large

volume of data.

Throughput: Throughput is similar to bandwidth, but it is measured as a number of I/O operations

per unit time (e.g., IO/s).

The model analyzes the flow of requests generated by each workload, determining the load

placed on system components, including the client CPU, client network interface, storage node

network interface, and the storage node’s disk. This analysis accounts for the chosen data distribu-

tion, calculating the (extra) load generated from the data encoding and directed at particular storage

nodes.

CHAPTER 3. STORAGE SYSTEM MODELS 31

3.5.1 Queueing model

The model chosen to estimate system performance is a closed-loop queueing model, and all queues

are first-come-first-serve (FCFS). The benefit of using a closed-loop model is that it models the

back-pressure that a slow storage system would cause on workloads. This back-pressure allows the

modeling of interactions (interference) between workloads. Intuitively, most applications and oper-

ating systems have a limit to the number of simultaneous requests that they may have outstanding

to a storage system. The longer a storage system takes to respond to requests, the fewer that will be

completed in a fixed period of time.

A queueing model is defined by its request stream(s), which are generated by the workloads,

and the queueing centers, which are the various system components that process I/O requests as

they move through the system. The workload definition contains the following attributes that are

used by the queueing model:

Multiprogramming level: The multiprogramming level of the workload is the maximum num-

ber of data requests that the workload can have outstanding simultaneously. Higher values

increase the parallelism for the workload.

Think time: The think time is the average time a given request thread (terminal user in queueing

theory) waits between the completion of a request and issuing the next. This would corre-

spond to an application’s processing time between I/O requests.

I/O size: This is the size (in bytes) of an I/O request from the application. The model uses the

I/O size in determining the demand placed on system resources. For example, larger requests

consume more network and disk time.

Read fraction: This is a value, between zero and one, inclusive, that determines the fraction of

a workload’s I/O requests that are read operations. The remainder are writes. Due to the

data encoding schemes, read and write operations place different demands on the network

and storage nodes because they transfer different amounts of data and interact with different

numbers of storage nodes.

Random fraction: This is the fraction of requests that are not contiguous with the previous I/O

request issued by a workload. This value, between zero and one, inclusive, influences the

disk service time, because a non-contiguous request would likely incur additional positioning

time over one that is part of a sequential stream.

CHAPTER 3. STORAGE SYSTEM MODELS 32

Both clients and storage nodes contain a network interface that serves as a queueing center. The

network interfaces are defined by the following attributes:

Bandwidth: This is the maximum bandwidth that the interface can transmit. For example, a 1 Gb/s

Ethernet network would be modeled with a bandwidth of 125 MB/s.

Latency: Each network request has some overhead processing delay that is modeled as a fixed

additional service time for each request.

Storage nodes are modeled with a single disk resource that has the following attributes:

Bandwidth: This is the sequential streaming bandwidth from the disk. Large, sequential I/O re-

quests would approach this transfer rate.

Latency: This is the average positioning time for non-sequential accesses (i.e., the latency to the

first byte transferred).

The above attributes are defined for each workload, client, and storage node independently, allowing

configurations with heterogeneous storage components to be analyzed.

The design of the queueing model used here is based on the work of Thereska et al. [2006],

with a few modifications to better fit the goals of this project. Thereska et al. used bounds analysis

to locate system performance bottlenecks. However, bounds analysis is insufficient for capturing

the interactions between the different workloads. Instead, the queueing model is solved using the

Mean Value Algorithm [Gunther, 2005, p138] with the PDQ [Gunther and Harding, 2007] model

solver. The PDQ solver calculates the relevant performance metrics based on the demand that each

workload places on each queueing center (i.e., the components that service requests such as the

network interfaces, CPUs, and disks).

Calculating service demand

The key to building the queueing model is determining the demand placed on each queueing center

by the workloads. Demand is typically measured as the amount of time required to service each

request. This demand can be broken into the product of the number of times a request visits the

queueing center and the service time during each visit: D = V · S. Breaking the demand up into

these two components allows the demand to be calculated from the flow of requests (to calculate

the visits) and the service time when a request is received.

CHAPTER 3. STORAGE SYSTEM MODELS 33

Visits per request The easiest way to determine the number of visits per request is by following

a typical request through the storage system. The number of visits is normalized to the number of

workload requests. For the following examples, the dataset is stored in a single data distribution

as m-of-n declustered across l, meaning that each data block is divided into n fragments when it

is written, and the n fragments are spread (on a per-block basis) across a potentially larger set of

storage nodes, l. Any m of the n blocks can be used to reconstruct the data block on a read. Due to

differences between requests, reads and writes will be examined separately.

For a read, issued by a particular workload, the request is first sent by the client associated

with that workload to m of the storage nodes in the dataset’s data distribution. Assuming an even

distribution of the fragments across the storage nodes in the data distribution, the probability that a

given one of the l nodes is accessed by the read request is:

Pread snode =Vread snode

=
m

l

At this point, only if the request misses in the storage node’s cache will it incur a disk access. This

work has not modeled the storage node cache, instead using a fixed 80% hit rate for all requests.

This results in 20% of requests sent to the storage node requiring a disk access. Therefore, the

number of visits to the disk is:

Vread disk =Vread snode · (1−HitRate)

=Vread snode ·0.2

=
0.2 ·m

l

All storage node requests, whether they hit in cache or require a disk access, send data across the

network to the client. Non-data transfers (e.g., the initial read request) are neglected by the model.

Vread Snet =Vread snode

=
m

l

On the client side of the storage system, read requests from all m fragment requests must be re-

ceived on the client’s network interface, but this is modeled as a single request with the size being

CHAPTER 3. STORAGE SYSTEM MODELS 34

influenced by m:

Vread Cnet = 1

and a single data block decode of the fragments is performed:

Vread cpu = 1

A similar analysis produces the number of visits to each resource for writes. A data block is

first encoded into n fragments,

Vwrite cpu = 1

and all n fragments are transmitted via the client’s network interface in a single operation:

Vwrite Cnet = 1

There are l storage nodes that are a part of the data distribution, and n of them receive fragments

from a given block:

Vwrite snode =
n

l

Vwrite Snet =
n

l

Again, 80% of the requests are assumed to be absorbed into the cache and later overwritten or

destaged to disk during idle periods, while the remaining 20% are handled immediately. The back-

ground destaging is not directly modeled.

Vwrite disk =Vwrite snode · (1−HitRate)

=Vwrite snode ·0.2

=
0.2 ·n

l

The number of visits to each queueing center has been calculated separately for read and write

operations. To get the overall number of visits to a queueing center, Vread and Vwrite need to be

CHAPTER 3. STORAGE SYSTEM MODELS 35

combined based on the read/write ratio of the workload:

V = ReadFrac ·Vread +(1−ReadFrac) ·Vwrite

This calculation is performed for each queueing center.

Service time per visit Calculating the service time at each queueing center can be considerably

more tedious than calculating the visits. The visits were determined by the request flow from only

the workload being analyzed, but the service time can be affected by the other workloads as well.

A request uses some amount of CPU time for encoding or decoding the data block. This time is

directly specified in the client description, and the model does not distinguish between the type (read

or write) or size of the request. It also does not model the effects of different encoding schemes on

CPU demand.

The client network service time is calculated as a linear model based on the size of the request:

SCnet = Latency+
Size

Bandwidth

The latency and bandwidth are specified in the client description. The size of the network request

is influenced by the workload I/O size and the type of the I/O. Reads transfer exactly IOSize bytes

while writes transfer IOSize · n
m
due to the data encoding.

SCnet = Latency+
Size

Bandwidth

= ReadFrac

(

Latency+
ReadSize

Bandwidth

)

+(1−ReadFrac)

(

Latency+
WriteSize

Bandwidth

)

= Latency+
ReadFrac ·ReadSize+(1−ReadFrac) ·WriteSize

Bandwidth

= Latency+
ReadFrac · IOSize+(1−ReadFrac) · IOSize·n

m

Bandwidth

CHAPTER 3. STORAGE SYSTEM MODELS 36

The usage of the storage nodes’ network interface is calculated using the same linear model, but the

amount of data transfered is always a single encoding fragment:

SSnet = Latency+
FragSize

Bandwidth

= Latency+
IOSize

Bandwidth ·m

The service time for a storage node’s disk is based on an initial positioning time plus transfer

time. If the current request is contiguous with the previous request, the initial positioning time is

omitted. For a storage node that has only one workload (and data distribution) accessing it, the

initial positioning time would be used based on the workload’s FracRand that is specified in the

workload description, leading to a overall service time of:

Sdisk = RandFrac ·Latency+
FragSize

Bandwidth

In general, there is more than one workload accessing a storage node, complicating the calculation

regarding the fraction of requests that are sequential. For a request to be considered sequential in

this model, it must have come from the same workload (and data distribution) as the previous, and

only then, (1−RandFrac) of the I/Os are sequential. The fraction of requests that are sequential are:
1−RandFrac
Workloads

, assuming that the request rates are approximately equal across all workloads that access

the storage node. For unequal request rates, the sequentiality of the slower workload will likely be

overestimated while the value for the faster is underestimated. Unfortunately, to know the actual

request rates (and their ratio), the queueing model must be solved. This unfortunate dependency is

the reason for this approximation. This changes the Service time to be:

Sdisk = RandFrac′ ·Latency+
FragSize

Bandwidth

=
(

1−SeqFrac′
)

·Latency+
FragSize

Bandwidth

≈

(

1−
1−RandFrac

Workloads

)

·Latency+
FragSize

Bandwidth

≈

(

1−
1−RandFrac

Workloads

)

·Latency+
IOSize

Bandwidth ·m

In the above formulae, Workloads is the number of unique data distributions that access the storage

node. This may be greater than the true number of workloads, if a data migration/re-encoding is

CHAPTER 3. STORAGE SYSTEM MODELS 37

Table 3.4: Summary of queueing model – This table lists the formulae for cal-

culating the average number of visits and service time (the product of which is the

demand) placed on each queueing center.

Queueing center Visit ratio Service time

Client CPU 1 CPUTime

Client network 1 Latency+
ReadFrac·IOSize+(1−ReadFrac)· IOSize·n

m

Bandwidth

Storage network
ReadFrac·m+(1−ReadFrac)·n

l
Latency+ IOSize

Bandwidth·m

Storage disk 0.2 · ReadFrac·m+(1−ReadFrac)·n
l

(

1− 1−RandFrac
Workloads

)

·Latency+ IOSize
Bandwidth·m

being modeled.

Table 3.4 summarizes the formulae used to calculate the visits and service time at each resource.

The product of these two is the service demand that can be used to solve the model. The demand

must be calculated for each workload/data distribution and resource separately.

Solving via MVA

The performance model uses the Mean Value Algorithm (MVA) [Gunther, 2005, p138] to solve the

queueing system. MVA is an iterative algorithm that provides a method to estimate the steady-state

characteristics of a closed queueing system. The insight behind MVA is that a request entering a

queue can see only a bounded number of jobs ahead of it. Because the job, itself, is just entering

the queue, for a workload with a multiprogramming level of N, there can be at most N− 1 jobs

ahead of it. In steady-state, the number of jobs already waiting is the same as the average number of

jobs at the queue in a system that has multiprogramming level of N−1. This leads to the following

iterative algorithm that is repeated for each n from 1 to N. The response time, Rk, for each of the K

queueing centers is calculated from their demand, Dk, and queue length, Qk, with n−1 jobs:

Rn,k = Dk +Dk ·Qn−1,k

CHAPTER 3. STORAGE SYSTEM MODELS 38

These response times are summed to determine the overall system response time:

Rn =
K

∑
k=1

Rn,k

This system response time is used to calculate the system throughput, including any think time, Z:

Xn =
n

Rn +Z

The throughput and the individual queue response time can be used to estimate the new queue

length:

Qn,k = Xn ·Rn,k

There is also an approximate MVA algorithm that is based on the observation that the queue

length, QN,k, is proportional to N when N is large. This allows an iterative, approximate solution

that avoids the loop over N, instead looping until an accuracy tolerance has been reached.

Both the exact and approximate MVA algorithms are implemented in the PDQ [Gunther and

Harding, 2007] analysis software that is used by this performance model. The exact algorithm is

used when there are three or fewer workloads, and the approximate algorithm is used otherwise.

3.5.2 Improvements and related models

The model used to estimate system performance takes a number of shortcuts for ease of imple-

mentation. The model is primarily concerned with modeling the main data flow between clients

and storage nodes. As such, it does not model interactions with the metadata server, the initial

request/final acknowledgement of data operations, or overheads associated with RPC transactions.

The network modeling also does not account for full duplex links, but this could be added by rep-

resenting each network interface as a pair of queues, one for transmits and one for receives. The

storage node cache model is also rather simplistic, using a fixed hit ratio. The CPU overhead of

encode and decode operations is also modeled as a fixed service time. In reality, the size, request

type, and encoding influence this cost.

The queueing model has no notion of a request waiting in multiple queues simultaneously. In

the actual system, requests wait and are serviced in parallel at the storage nodes, but the queueing

system models this as a series of sequential operations, increasing the predicted request latency.

CHAPTER 3. STORAGE SYSTEM MODELS 39

Many researchers have developed performance models for storage systems. A number of tech-

niques have been employed, including ad-hoc analytical models [Geist and Trivedi, 1993], queue-

ing models [Uysal et al., 2001; Varki et al., 2004], empirical models [Anderson, 2001], and relative

models [Mesnier et al., 2007], to name a few.

Meyer [1980] stresses the importance of modeling not just fault-free performance but also the

performance for systems in degraded states. This performability modeling is increasingly important

as systems increase in size and move to providing high levels of service using large numbers of lower

performing (and less reliable) components. Extending the performance model to generate a range of

performance metrics that account for the degraded data distributions can lead to better predictions

of overall system utility. Currently, the performance and any utility calculation that is based on

it assumes fault-free performance even though using m-of-n encodings provide a large number of

possible degraded but operational states, many of which would have lower utility than predicted by

a fault-free analysis. Depending on the particular utility function, it may be the case that relatively

few of the degraded states need to be analyzed to obtain an accurate estimate. Techniques such as

those presented by Alvarez et al. [2001a] could be useful for this analysis.

3.6 Reliability

Reliability, R(T) is the probability that a system, functioning at t = 0, will still be operating properly

at t = T . Typically, instead of modeling the actual reliability function, it is reduced to a single metric,

such as the mean time to failure (MTTF) or the annual failure rate (AFR). While the AFR andMTTF

are reciprocals of one another, this document will prefer using the AFR numbers because they are

slightly more intuitive for judging risk.

This system model uses AFR attributes from storage nodes and a dataset’s data distribution(s)

to calculate the AFR of the dataset. This AFR can be used as a measure of risk of data loss, likely

resulting in financial penalties related to recreating or restoring data from an external backup.

3.6.1 Markov model

The reliability metric for a dataset is calculated using a Markov chain with states representing the

number of storage node failures. The chain terminates in an absorbing state that indicates the loss

of data for the dataset being modeled. The chain structure for a given dataset is determined by the

data encoding. Since an m-of-n encoding can tolerate n−m failures and continue functioning, the

CHAPTER 3. STORAGE SYSTEM MODELS 40

chain has n−m+ 2 total states to account for failure-free operation as well as an absorbing state

that accounts for the final, catastrophic failure. For simplicity, the states will be referred to by the

number of failures they represent (i.e., f = 0 . . .(n−m+1)).

State transitions within the model are due to storage node failures and data re-encoding opera-

tions that return the encoding to its failure-free state. Failure transitions move the model from the

current state, f , to the state f +1, indicating one additional failure. Repair operations are modeled

as a complete re-encoding of the dataset. As such, multiple failures can be repaired simultane-

ously. Using this model, the repair operation from each state, 0 < f ≤ n−m, transitions back to the

fault-free state, f = 0.

The failure rates are modeled as a base failure rate, λ, for a single storage node, multiplied by

the number of functioning storage nodes in the data distribution. For example, a dataset with an

encoding of m-of-n declustered across l, there are a total of l storage nodes that hold data from this

dataset in the failure-free state. With one failure, there are only l−1 nodes remaining that can fail

and affect this dataset. The base failure rate, λ, is the maximum failure rate of any of the l storage

nodes. This leads to a conservative estimate of the dataset’s reliability in cases where heterogeneous

storage nodes are used.

The repair rate, µ, used in the model is influenced by the amount of time required to re-encode

the dataset. This time is estimated based on the amount of data that must be re-encoded and a fixed

fraction (5% in all experiments) of the streaming bandwidth of the storage nodes. The actual repair

rate is:

DataToMove =
DatasetSize ·n

m · l

µ =
DataToMove

EffBandwidth

µ =
DatasetSize ·n

m · l ·BW ·0.05

The bandwidth (BW) used above is the minimum streaming bandwidth of the l storage nodes, again

producing a conservative estimate. An example Markov chain for an (n−2)-of-n declustered across

l (e.g., 3-of-5) encoding is shown in Figure 3.1.

Once the chain has been constructed, it must be solved to determine the time until the absorbing

state is entered (i.e., the time until data loss). Using the transformation discussed by Pâris et al.

[2006], the chain can be altered to remove the absorbing state, allowing traditional solution tech-

niques to be used. The insight is that instead of viewing the process as a one-time occurrence, it

CHAPTER 3. STORAGE SYSTEM MODELS 41

Figure 3.1: ExampleMarkov chain for reliability model – This figure shows an

example Markov chain used to calculate the reliability for an (n−2)-of-n declus-
tered across l data encoding. The f = 3 state is an absorbing state, indicating data

loss.

can be modeled as a process that immediately restarts in the initial state after a data loss. With this

view, the chain is modified such that the transition into the absorbing state is redirected to the f = 0

state, and the quantity of interest is the rate at which this transition is followed. For the example in

Figure 3.1, this amounts to redirecting the arc between f = 2 and f = 3 to point from f = 2 to f = 0.

This removes state f = 3. The rate that the f = 2 to f = 0 transition is followed is (l−2)λ times the

probability of being in state f = 2. The goal, then, is to solve for the limiting probabilities (the Pi’s)

of being in each state. This can be done using the “balance equations,” which are based on the con-

cept that every transition into a state must be balanced with a transition out (e.g., the transition rate

into f = 0 equals the transition rate out of f = 0). For a system with three states (as in the example

above), this produces two independent equations. Combining this with the knowledge that the sum

of the limiting probabilities is one provides three independent equations and three unknowns (the

limiting probabilities). The system of equations for Figure 3.1 is shown below.

lλP0 = (l−1)λP1 +µP1

(l−1)λP1 = (l−2)λP2 +µP2

2

∑
i=0

Pi = 1

This system of linear equations is solved via LR decomposition1 to determine the limiting probabil-

ities (the Pi’s). The failure rate for the example above is then:

FailureRate = P2 · (l−2)λ

1This is also knows as LU decomposition and is an application of Gaussian Elimination.

CHAPTER 3. STORAGE SYSTEM MODELS 42

3.6.2 Improvements and related models

The reliability model makes a number of simplifications that limit the experimentation for which

it can be used. The model assumes a single failure rate for each storage node. This simplifies the

model considerably, allowing the states to represent the number of failures instead of having one

state for each possible combination of failures. There may be some benefit to using combinations

of reliable and unreliable storage nodes together, potentially saving money on less expensive nodes

while having the reliability boosted by a few with high reliability. Unfortunately, this cannot be

evaluated with the current, single failure rate model.

Currently, the repair rate is based on using a fixed fraction of the storage node bandwidth to

carry out repair operations. Based on the system model, however, a failure may not be repaired,

or it may be repaired and migrated to an entirely different data distribution. It is unclear how this

should be represented within the model. One approach would be to not model repair at all. This

would produce reliability values that assumed a data distribution would accumulate failures until

it finally fails. Such a model would be conservative because it is highly likely that a future tuning

operation in the storage system would make repairs before data is actually lost.

Reliability models of storage using Markov models are not new. Amiri and Wilkes [1996]

produced similar models for availability and reliability. Gibson [1991] examined the reliability of

RAID arrays. Also, Burkhard and Menon [1993] used a Markov model to examine the reliability of

RAID groups as the size of the group and number of parity disks is adjusted. Lee and Leung [2002]

examined the reliability of a video-on-demand service that used a cluster of servers that stored data

with m-of-n schemes.

There are a number of other failure modeling options that could be used in this architecture. For

instance, Apthorpe [2001] examined fault trees and event trees for modeling reliability.

3.7 Other models

This chapter has provided a description of the current set of models and metrics that are available for

use in experiments. The tool’s architecture allows additional models to be easily added, expanding

the vocabulary of objectives that can be expressed using utility functions. This section discusses

potentially interesting additional models that could be added.

CHAPTER 3. STORAGE SYSTEM MODELS 43

3.7.1 Physical space

Data center floor space is a scarce resource. The total square footage for computer equipment

cannot be easily expanded, and many organizations have very limited space available. A metric

that describes the amount of data center space occupied by a storage solution would be useful for

automatically trading off potential storage form factors (e.g., rack-mounted vs. free standing) or

ensuring a storage system fits within a specified equipment space (e.g., twelve rack units or 12 U).

This metric could be used to assign a cost per rack unit that the system consumes, allowing a utility

function to account for the “rent” of the physical space over the system’s expected lifetime.

3.7.2 Robustness

In general, it is quite difficult to model storage systems accurately. Approximations are made for the

sake of modeling ease, some components are poorly understood or their construction is unknown,

and workloads may change over time. All of these issues lead to uncertainty in the predictions of

system metrics. A measure of the system configuration stability could be useful.

Consider the following two scenarios. The first is optimal according to the provided metrics

and objectives, but with a small change to any workload, the overall system poorly satisfies its

objectives. In the other scenario, the configuration may not quite be optimal, but the configuration

is resilient against small workload changes. This second configuration would be much more robust

and potentially more desirable.

One way to quantify this as a system metric would be as a number that represents the amount

by which a workload could change (e.g., its intensity, I/O size, or R/W ratio, etc.) before the

observed performance would change by some fixed percentage (e.g., 10%). This would be a metric

representing the performance stability of a configuration.

3.7.3 Similarity

There is a certain learning curve associated with new hardware and configurations. During this

initial time period, a system administrator may be slower at responding to problems and less ef-

fective at managing the system. Because of this learning curve, it may be beneficial to rank new

systems and configurations based on their similarity to a current or previous system with which the

administrator is proficient.

CHAPTER 3. STORAGE SYSTEM MODELS 44

Quantifying the notion of similarity is difficult because it should account for hardware common-

alities such as network interfaces and form factors as well as more difficult to quantify properties

such as system failure semantics and configuration techniques.

3.8 Summary of models

The models described above were chosen to produce a reasonable selection of metrics that allow a

thorough investigation into using utility to control a distributed storage system. While the models

have not been validated against a live system and make numerous simplifications that could impact

their accuracy, the spectrum of modeling techniques and complexity provides a strong indication

that conclusions based on these models will translate well to a system based on validated models.

3.8.1 Model performance

The time required for the models to analyze a storage configuration and calculate its metrics directly

impacts the speed at which both provisioning and tuning operations can be planned. To investigate

the time required to analyze storage configurations, a baseline configuration was created and scaled

to various numbers of workloads and storage nodes. Both the number of workloads and storage

nodes were scaled between 10 and 50, independently, in steps of 10, creating 25 total system sizes.

Each of these 25 system sizes was analyzed by each of the system models to produce the measure-

ments in Figure 3.2. The data was generated by repeatedly randomizing the storage configuration,

allowing individual datasets to use up to eight storage nodes each (1≤ l ≤ 8). For each system size,

configurations were generated and analyzed for 60 seconds, tracking the number of configurations

that were evaluated and the amount of time spent in the models (as opposed to creating the random

configurations). The figure plots the average of these trials, and the 95% confidence interval for all

data points is within 10%.

Figure 3.3 provides a composite picture of the time required to calculate system metrics using

the models presented here. Again, random configurations of the 25 different sizes were analyzed,

averaged, and plotted. For all points, the 95% confidence interval is within 3% of the average. The

models used for this graph are the binomial availability, capacity, power and cost, performance,

reliability, and symmetry models. This is the same selection of models that are used in experiments

throughout the rest of the document.

CHAPTER 3. STORAGE SYSTEM MODELS 45

 10
 20

 30
 40

 50

 10
 20

 30
 40

 50
 0

 100
 200
 300
 400
 500
 600

T
im

e
 (

m
s
)

DatasetsStorage nodes

(a) Detailed availability

 10
 20

 30
 40

 50

 10
 20

 30
 40

 50
 0
 1
 2
 3
 4
 5

T
im

e
 (

m
s
)

DatasetsStorage nodes

(b) Binomial availability

 10
 20

 30
 40

 50

 10
 20

 30
 40

 50
 0

 0.5
 1

 1.5
 2

 2.5

T
im

e
 (

m
s
)

DatasetsStorage nodes

(c) Capacity

 10
 20

 30
 40

 50

 10
 20

 30
 40

 50
 0

 0.5

 1

 1.5

 2

T
im

e
 (

m
s
)

DatasetsStorage nodes

(d) Power and purchase cost

Figure 3.2: System model performance – These figures show the performance

of the individual system models as a function of the size of the storage system

being evaluated. The storage system sizes range between 10 and 50 storage nodes

with 10 to 50 datasets in the system. There is always one workload and one client

for each dataset.

The largest configuration examined, 50 storage nodes and 50 datasets, required approximately

0.46 seconds to evaluate. The performance model is the limiting factor for analyzing configurations,

consuming 96% of the computation time.

CHAPTER 3. STORAGE SYSTEM MODELS 46

 10
 20

 30
 40

 50

 10
 20

 30
 40

 50
 0

 100
 200
 300
 400
 500

T
im

e
 (

m
s
)

DatasetsStorage nodes

(e) Performance

 10
 20

 30
 40

 50

 10
 20

 30
 40

 50
 0
 5

 10
 15
 20
 25

T
im

e
 (

m
s
)

DatasetsStorage nodes

(f) Reliability

 10
 20

 30
 40

 50

 10
 20

 30
 40

 50
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2

T
im

e
 (

m
s
)

DatasetsStorage nodes

(g) Design symmetry

Figure 3.2: System model performance (cont.) – These figures show the per-

formance of the individual system models as a function of the size of the storage

system being evaluated. The storage system sizes range between 10 and 50 stor-

age nodes with 10 to 50 datasets in the system. There is always one workload and

one client for each dataset.

CHAPTER 3. STORAGE SYSTEM MODELS 47

 10
 20

 30
 40

 50

 10
 20

 30
 40

 50
 0

 100

 200

 300

 400

 500

T
im

e
 (

m
s
)

DatasetsStorage nodes

Figure 3.3: Total time to calculate system metrics – This figure shows the total

amount of time required for the system models to analyze a storage configuration.

The availability model used here is the binomial model. The storage system sizes

range between 10 and 50 storage nodes with 10 to 50 datasets in the system, and

there is always one workload and one client for each dataset. The performance

model takes the majority of the time required by the entire set of models.

Chapter 4

Utility

Every decision has, and is predicated upon, a set of consequences. These consequences have their

benefits and costs, and making the best choice amounts to choosing the one with the largest net ben-

efit. However, analyzing alternatives frequently requires comparing and making trade-offs across

dissimilar metrics. For storage systems, these metrics can include system (purchase) cost, power

consumption, performance, and reliability. To automatically provision and tune a storage system, a

tool must be able to navigate these choices in an automated manner, weighing the alternatives along

each of these system attributes.

4.1 Overview of utility

Utility is a method for weighing the consequences of decisions. It provides a framework for collaps-

ing dissimilar metrics into a single value so that alternatives can be evaluated. Keeney and Raiffa

[1993] provide a background on utility and how it can be used to evaluate decisions. Their book

provides a much more in-depth and formal presentation of the concepts described below.

Each outcome of a decision can be assigned some utility value based on its consequences.

The best choice is the one with the highest expected utility value. Utility can be either ordinal

or cardinal. Ordinal utility specifies only that all alternatives are totally ordered by the utility value.

That is, for each possible outcome, Y , if Yi is preferred to Yj, the utility value, ui, is greater than

u j, for all i and j, but the magnitude of the difference between the utility values does not imply

anything about the magnitude of preference. As an example, consider three utility values, u0 = 5,

u1 = 10, and u2 = 11, corresponding to outcomes Y0, Y1, and Y2. With ordinal utility, all that can

48

CHAPTER 4. UTILITY 49

be inferred is that Y2 is preferred to Y1, which is, in turn, preferred to Y0. The magnitude of the

differences between the values is not relevant. For cardinal utility, however, the magnitude of the

utility difference is important. Cardinal utility opens up the possibility of reasoning about uncertain

outcomes by calculating the expected value of utility. For example, a decision with two choices

may have the following property: Alternative #1 produces a result with u1 = 5, and alternative #2

produces a result of u2 = 11 with probability 0.5 and a result of u2 = 3 otherwise. Comparing the

expected values of utility, E(u1) = 5 and E(u2) = 0.5 ·11+0.5 ·3= 7 tells us that alternative two is

preferable. While this work does not directly consider such uncertainty, the dynamic tuning relies

on the ability to trade off utility over time in a similar manner.

A utility function maps outcomes to utility values. For example, an outcome, Yi, is evaluated by

some utility function, U(·), into a utility value: ui = U(Yi). Typically, decision consequences are

characterized by multiple attributes (e.g., different storage system metrics), Yi,0,Yi,1, . . . ,Yi,n−1, with

the utility function being a multi-dimensional function of the attributes: ui = U(Yi,0...n−1). Such

arbitrary functions are typically very difficult to specify because of their high dimensionality. When

specifying preferences for the various attributes, it is desirable to be able to do so independently

of each other. For example, instead of trying to create a single function that represents all possible

values of workload latency crossed with dataset availability, it is desirable to express preferences

for latency and preferences for availability individually. At its extreme, this allows the system

administrator to specify n 1-dimensional functions instead of a single function that is n-dimensional.

While there are several types of independence, this work makes use of additive independence

because it simplifies the specification of utility. With additive independence, the preferences across

the individual attributes are expressed as individual utility functions (e.g., ui,0 = U0 (Yi,0) and ui,1 =

U1 (Yi,1)). These individual functions are then combined, via weights (e.g., a0 and a1), to produce

the final utility value:

ui =
n−1

∑
j=0

a jUj (Yi, j)+ c

In order to use this form, it must be the case that the preferences for Y∗, j are not affected by the

value of any Y∗,k,k 6= j. While this condition does not, in general, hold if the Y ’s are assumed to be

storage metrics such as latency or availability, independent functions can often be constructed from

higher-level abstractions, examples of which will be discussed in Section 4.3.

CHAPTER 4. UTILITY 50

4.2 Utility in computer systems

Kephart and Walsh [2004] present autonomic computing in artificial intelligence terms, comparing

approaches that use if-then (ECA) rules, goal-based systems, and utility-based systems. They state

that a utility-based approach has the ability to guide systems in situations where goal-based rules

may conflict, because “Utility Function Policies allow for unambiguous, rational decision making

by specifying the appropriate tradeoff.” This need to make trade-offs has caused a surge in interest

in utility for autonomic, or self-∗, systems.

Both Irwin et al. [2004] and AuYoung et al. [2006] use utility to schedule batch computation.

The former uses utility to schedule jobs, accounting for a decreased benefit as a job takes longer to

complete. The latter work examines scenarios where a collection of job results are necessary before

the submitter can act on them. This leads to a desire to schedule either most or none of a user’s jobs.

Chen et al. [2004] combine dynamic pricing of web workloads with admission control to max-

imize the profits of a web service provider. The system trades off revenue from additional requests

against potentially lower revenue from already-accepted requests that may be degraded by the ac-

ceptance of additional work. IBM Research has also investigated using utility to control web-based

workloads. Walsh et al. [2004] use utility functions to assign servers between two different ser-

vice classes (e.g., gold vs. silver customers). Tesauro [2005] uses reinforcement learning to shift

resources between batch and interactive applications to best satisfy utility functions derived from

SLOs for each application type. Kephart and Das [2007] apply utility to control the response time

in IBM’s WebSphere Extended Deployment.

Utility has also been used for automatically determining fidelity settings in multimedia applica-

tions [Ghosh et al., 2003; Lee et al., 1999]. This work examined trading off different fidelity axes

such as color depth, frame rate, and frame size.

In more speculative work, Candea and Fox [2002] discuss the use of utility for designing sys-

tems, but they take a more traditional decision theory approach as opposed to using utility as a

framework to automate the process. Kelly [2003] argues for using utility to provision systems in a

Utility Data Center, using Integer Programming and the CPLEX solver.

4.3 Cost-based utility

While utility holds promise for allowing tools to automatically navigate trade-offs for system provi-

sioning and tuning, the task of creating suitable utility functions is not trivial. Finding a method for

CHAPTER 4. UTILITY 51

system administrators to communicate their preferences (or even determine what those preferences

are) is a difficult task. While it has its shortcomings, business costs provide a reasonable starting

point for creating utility functions, because they allow the direct, monetary effects to be captured.

Utility based on business costs has been used to design storage systems for dependability [Kee-

ton et al., 2004; Keeton and Wilkes, 2002]. It has also been used to examine recovery after dis-

asters [Gaonkar et al., 2006; Keeton et al., 2006]. The disaster protection and recovery solutions

were designed to minimize the total expected costs, accounting for both the cost of the protection

method(s) and the penalties that would be incurred during an event. Bhagwan et al. [2005] pro-

posed using time-dependent utility functions to change how data is treated over its lifetime, creating

a system for automating ILM.

Storage objectives come from many sources. The service level for each dataset and workload

affect the overall satisfaction with the storage system. Additionally, there are system-wide metrics

that are important, such as the system’s purchase cost and power consumption. Each of these dif-

ferent sources of utility need to be combined to form a single utility function. Identifying sources

that are independent of each other allows the specification to be simplified, and these independent

sources can be combined using the formula from Section 4.1:

u =
n−1

∑
j=0

a jUj (Yj)

To use this form, it must be possible to identify the (independent) attributes, Y , how they trans-

late into utility, U(·), and how they can be properly scaled relative to each other, using a. To

identify the attributes for the utility function, one can look toward the items that affect business

costs and revenues. Some common sources are applications’ progress (e.g., database throughput

or a streaming application’s bandwidth), maintenance activity (e.g., repair costs or lost productivity

due to outage), or direct infrastructure costs (e.g., purchase cost or power consumption). With an

understanding of these contributors, a utility function can be constructed to express these business

costs. For example, a storage system consuming wWatts of electricity at $0.12 per kWh would have

a utility function of:

Upower =

(

−$0.12

kW·hr

)

w

Once the attributes and utility functions have been identified, they must be scaled relative to each

other to ensure that proper trade-offs are made. One of the obvious benefits to using business costs

is that it provides a way to scale the individual utility functions. When using business costs, utility

CHAPTER 4. UTILITY 52

is a rate of money per unit of time. In the example above, Upower is in units of dollars per thousand

hours. The value of the a j’s should be chosen so that all utility functions have the same units. For

the majority of examples presented here, dollars per year will be used. While this discussion has

explicitly discussed the scaling factor, a, it will typically be incorporated into the construction of

the corresponding utility function such that all utility functions will have the same units and can be

summed directly.

4.3.1 Examples

The above discussion of using business costs to create utility functions was somewhat abstract. To

make the process more concrete, three hypothetical examples are discussed below. The first scenario

is an imaginary e-commerce web site, and it will serve as the basis for much of the evaluation of

storage provisioning using utility. The second scenario, trace processing, provides an example of a

non-linear relationship between utility and one of the system metrics. The third scenario provides an

example, using a web server and database, where utility is tied to the performance of two different

workloads in a dependent manner.

E-commerce web site Online retailers generate the majority of their revenue via customers plac-

ing orders on a web site. These orders are passed to a warehouse where employees package mer-

chandise and ship it out to the customers. Using this business model, it is possible to create a utility

function that describes the value of the storage system to the retailer.

Revenue is generated via the transaction processing workload from customers placing orders on

the web site. Based on the average revenue per order, the fraction of transactions that are for new

orders, and the average number of I/O operations per transaction, the administrator may determine

that, on average, the company receives 0.1¢ per I/O that completes. This expression of revenue

based on the throughput (in IO/s) must also account for the lack of orders should the system be

unavailable:

Uperf (IOPSWL,AVDS) =($0.001) IOPSWL AVDS

(

3600 s

hr

)(

24 hr

day

)(

365.25 day

yr

)

=

(

$3.2x104 s

yr

)

IOPSWL AVDS

CHAPTER 4. UTILITY 53

While the system is unavailable, the warehouse is unable to process and fill orders, and employees

must work to fix the outage. This cost is estimated to be $10,000 per hour.

Uav (AVDS) =

(

−$10,000

hr

)

(1−AVDS)

(

24 hr

day

)(

365.25 day

yr

)

=

(

−$8.8x107

yr

)

(1−AVDS)

The cost of losing the dataset from the primary storage system is estimated to be $100 M.

Urel (AFRDS) =(−$100 M)AFRDS

Accounting for the cost of electricity to power the system, assuming it consumes P Watts of elec-

tricity:

Upwr (P) =

(

−$0.12

kWh

)

P

(

kW

1000 W

)(

24 hr

day

)(

365.25 day

yr

)

=

(

−$1.05

W·yr

)

P

The price of electricity used here ($0.12 per kWh) is considerably higher than the national average

for industrial customers, which is $0.0675 per kWh as of July 2007 [Energy Information Adminis-

tration, 2007]. The generous amount used here should cover the extra power required for cooling

and support equipment as well.

For provisioning scenarios, it is also important to account for the purchase cost,C, of the system,

which is assumed to be amortized across a projected three year lifetime:

Upurchase (C) =

(

−C

3 yr

)

The above four (independent) utility functions share the same units (dollars per year) and can

be summed to produce the final utility function for this e-commerce scenario:

U(IOPSWL,AVDS,AFRDS,P,C) =Uperf (IOPSWL,AVDS)+Uav (AVDS)

+Urel (AFRDS)+Upwr (P)+Upurchase (C)

CHAPTER 4. UTILITY 54

Trace processing Trace analysis is a common activity within the Parallel Data Laboratory at

Carnegie Mellon. Typically, students use software to scan through previously captured file system

or I/O traces, looking for insights or validation of new ideas. By examining this activity and making

some simplifications, it is possible to construct a utility function that would pertain to trace analysis

by the PDL’s graduate students.

In this example, utility is described by the costs associated with the trace processing activity.

These costs are mainly associated with the cost of the graduate students and system administrator,

both of which are assumed to cost the university $35 per hr1. Based on these numbers and some

assumptions about the behavior of the people involved, it is possible to construct a utility function

that relates costs with storage system bandwidth and data availability.

In this scenario, traces are analyzed as a whole, and students wait for the run to complete. This

assumption allows the cost of a student’s time to be calculated based on the time required to process

a trace. This assumption could be relaxed to allow the student to perform other work (with some

efficiency) during the trace processing or to create a decaying value (increasing cost) as a function

of the slowdown of the task in a similar manner to what was used by Irwin et al. [2004]. Processing

the trace is assumed to be I/O-bound, permitting the calculation of the time required to process the

trace based on the bandwidth from the storage system and the size of the trace. This could be relaxed

with little difficulty, resulting in a maximum benefit (minimum cost) at, and above, the point where

the I/O system is no longer the bottleneck. An outage of the trace data set affects one student and

the system administrator, both of whom will be occupied repairing the outage. There are 250 trace

analyses per year, which is approximately one run per regular work day.

Given the above assumptions and the knowledge that, on average, a trace set is 27 GB in size2,

the following utility function can be created based on the bandwidth of the trace processing work-

load, BWWL, (in MB/s):

Uperf (BWWL) =StudentTimeSpentWaiting

=(TimePerRun)(FrequencyOfRun)(StudentTime)

=

(

27 GB

BWWL

)(

250 runs

yr

)(

−$35

hr

)(

1024 MB

GB

)(

hr

3600 s

)

=

(

−$6.72x104 MB

yr·s

)(

1

BWWL

)

1This cost includes not only salary or stipend but also benefits, including tuition.
2The average trace size was calculated from the PDL’s trace repository.

CHAPTER 4. UTILITY 55

In a manner similar to Patterson [2002], the cost of downtime as a function of availability can be

expressed as:

Uav (AVDS) =(DowntimeCost)(1−AVDS)

=(StudentTime+AdministratorTime)(1−AVDS)

=

((

−$35

hr

)

+

(

−$35

hr

))

(1−AVDS)

(

24 hr

day

)(

365.25 day

yr

)

=

(

−$3.94x105

yr

)

(1−AVDS)

If the storage system should fail and lose the trace data, it is estimated that it would require approxi-

mately 15 hr of the administrator’s time to either restore or re-acquire them from the original source.

The expected cost due to this lack of reliability is related to the dataset’s annual failure rate3:

Urel (AFRDS) =

(

−$35

hr

)

(15 hr)AFRDS

=(−$525)AFRDS

The power and purchase costs follow those of the e-commerce example, above:

Upwr (P) =

(

−$1.05

W·yr

)

P

Upurchase (C) =

(

−C

3 yr

)

Also, as above, the component utility functions share a common set of units so they can be

directly summed:

U(BWWL,AVDS,AFRDS,P,C) =Uperf (BWWL)+Uav (AVDS)+Urel (AFRDS)

+Upwr (P)+Upurchase (C)

3One could also add a term to this equation for the lack of student productivity, but I will assume they can shift to

another task during the outage.

CHAPTER 4. UTILITY 56

Workload dependencies The above examples involved only a single workload and dataset, but

most real-world scenarios involve multiple workloads and datasets in a given storage system. In the

case where the applications are independent (e.g., running the e-commerce site and trace processing

together), the components for utility could be summed independently, assuming a common currency

such as dollars. Another situation of interest is one in which the workloads are not independent.

Consider a web site where each page served to clients contains a mix of static and dynamic content.

One example of this could be a site that provides stock market price quotations. The bulk of each

web page is static, but the actual price quote changes each time the page is presented. This could

be modeled as two storage workloads running on the web server (the storage client), accessing two

different datasets. One is accessing files that serve as page templates, and the other is accessing a

database of quotations. One component of utility in this scenario would likely be the performance

(pages per second) of serving web pages. For a page to be served, I/Os from both workloads must

be completed, and they must complete in a specific ratio. This would lead to a utility function of the

form:

Uperf (IOPSWL1 , IOPSWL2) =(ValPerPage)min(IPP1 · IOPSWL1 , IPP2 · IOPSWL2)

where IPPj is the number of I/Os required from workload j for each page served. This equation

states that the utility is limited by the slower (scaled) of the two workloads.

4.4 Priority-based utility

The above section advocated using business costs to construct cardinal utility functions, but there

may be situations where there are no good cost metrics available or, perhaps, the administrator is

unfamiliar with utility and would instead prefer to express his objectives as a strict set of priorities.

Strict priorities can be used to compare two configurations, but it is difficult to assess “how much”

better one configuration is than another. With cost-based utility, having twice the net income is

likely to be approximately twice as good, but is meeting twice as many objectives twice as good?

Instead of attempting to make judgements such as this, the following scheme uses only ordinal

utility to evaluate configurations.

In a typical priority-based scenario, the system administrator has a set of prioritized objectives

for the storage system such as:

1. Data protection: Achieve four nines of availability

CHAPTER 4. UTILITY 57

2. Performance: Achieve 90 IO/s

3. Capacity: Minimize capacity consumption

The system should first spend resources to obtain high availability for the dataset. Next, obtain at

least 90 IO/s, while not allowing the availability to slip below four nines. After achieving both of the

first two objectives, work to minimize the capacity consumption (by choosing more space efficient

data encodings).

Examining each of these objectives individually, it is possible to create utility functions (FC is

the fraction of raw capacity used):

U1 (NINESDS) =min(NINESDS,4)

U2 (IOPSWL) =min(IOPSWL,90)

U3 (FC) =1−FC

The general form of these priority-ranking scenarios is to have a series of n functions, with the first

n−1 expressing specific targets and the final function being a maximization. The first two functions

use the min(·) function to limit the utility to the value when the objective is reached. This prevents

the system from attempting to improve beyond the stated objectives.

The separate utility functions must still be combined into a single function. This can be done

by scaling the individual functions, ensuring that improvements to a higher ranked metric take

precedence over those of lower priority. For scaling the individual functions, an arbitrary scaling

factor, S, will be used. It will also be assumed that the individual utility functions are bounded, with

U0
i denoting the minimum value of the ith function and U∗

i denoting its maximum. Each function

will be scaled to create a new function, U′
i (·):

U′
i (·) =

⌊

(S−1)
Ui (·)−U0

i

U∗
i −U0

i

⌋

This scaling ensures that each U′
i (·) covers the range of integers between 0 and S− 1, inclusive.

The use of integers quantizes the possible values for the metrics, making their precision explicit and

ensuring that (small) fluctuations in a higher ranked metric cannot be offset by a large change to a

CHAPTER 4. UTILITY 58

lower ranked metric. The full utility function can be constructed as:

U(·) =
n−1

∑
i=0

Sn−i−1Ui (·)

For the example set of priorities above, the final utility function would be (assuming S = 1000):

U(NINESDS, IOPSWL,FC) =1x106
⌊

999

4
U1 (NINESDS)

⌋

+1000

⌊

999

90
U2 (IOPSWL)

⌋

+ ⌊999U3 (FC)⌋

The scale factor, S, can be chosen to be arbitrarily large, ensuring sufficient resolution of the com-

ponent utility functions.

This scheme for priority-based utility has several limitations that stem from the lack of car-

dinality. The utility function does not intrinsically support making trade-offs. While useful for

initial provisioning, the lack of support for making trade-offs precludes its use for data migration.

However, an external method for making such trade-offs could be constructed and applied.

4.5 Utility with constraints

Real-world deployments frequently have constraints on the characteristics of the storage system that

can be used. For example, there may be constraints on the physical space consumed by the storage

system (e.g., square footage or rack units), on the total power consumption, on the system purchase

cost, etc. Combining the techniques of the priority-based utility and the cost-based utility, functions

can be created that perform much like the cost-based utility but adhere to applicable constraints.

The cost-based utility function, Uc (·), can be created as described previously. The constraints

can be expressed with the priority scheme above to create a second utility function, Up (·). The

composite utility function could be expressed as:

U(·) =

{

Uc (·) if
(

Up (·) =U∗
p

)

Up (·)−U∗
p +U0

c otherwise

CHAPTER 4. UTILITY 59

whereU∗
p is the maximum value of the priority-based function, andU0

c is a lower bound for the cost-

based function. U0
c can be any value guaranteed to be less than Uc (·) for reasonable configurations.

This ensures that the utility value is equal to the cost-based value as long as the constraints are met,

and if they are not met, the utility produced by the constraints will be less than all cost-based values.

When using this method for provisioning, verifying that the chosen configuration is greater than

U∗
p ensures that the configuration satisfies all the constraints. Care must be taken when using this

type of utility function for automatic tuning because trade-offs should be made only within the

cost-based utility function (i.e., the value of utility should be greater thanU∗
p at all times).

The above adjustments incorporate the constraints into the utility function, allowing a solver

to satisfy the constraints in the normal course of maximizing utility. An alternate approach would

be to specify the constraints directly and use a solution technique that is designed for constrained

optimization.

4.6 Utility elicitation

Creating utility functions can be a difficult and time consuming task, particularly for a system ad-

ministrator that is unfamiliar with utility and decision theory. Even using business costs, specifying

utility is likely to be a challenge. Finding a way to help decision makers specify their preferences is

a significant challenge in decision theory, not just with storage system administrators. Chen and Pu

[2004] survey different utility elicitation methods and discuss systems that use them. Patrascu et al.

[2005] describe a method for eliciting utility between automated systems, trading off the number of

queries and fidelity of the optimization decision. While general solutions to the problem of eliciting

utility functions are elusive, storage vendors already must address this problem (though in a more

limited way) to guide provisioning using traditional methods. Adding a utility framework and the

opportunity to incorporate business costs to the provisioning and tuning of storage will hopefully

make this process easier.

Chapter 5

Provisioning solver

The previous two chapters described two of the three main components used for automatically

provisioning storage. Section 1.2 first presented an overview of these components, and Figure 1.3

showed the components pictorially. Chapter 3 discussed the system models that predict the values

of system metrics based on a storage system configuration, and Chapter 4 described the framework

used to evaluate configurations based on those system metrics. When these two pieces (the models

and utility function) are assembled, a storage system configuration is input, and an associated utility

value describing the suitability of that configuration is output. This chapter will discuss the solver

component that uses the feedback from the utility values to produce new storage configurations,

closing this design loop.

This provisioning loop attempts to create a storage system design that best satisfies the objectives

of a system administrator, as expressed by the administrator’s utility function. The provisioning sys-

tem is given a description of the system components, such as clients, workloads, datasets, and types

of storage nodes. The objective is to determine how many and what type of storage nodes should

be used and what data distribution should be chosen for each dataset. The final configuration may

also include workload throttling that can be used to limit the I/O rate of less important workloads,

allowing others to receive more system resources.

For this dissertation, several different approaches were used to create storage designs. When

creating the solvers, every attempt was made to keep them independent from the other system

components (i.e., the models and utility function). This choice was made because both the util-

ity functions and system models are approximations of what would be expected in a real system. By

keeping the solvers independent, it raises the likelihood that other models and utility functions could

60

CHAPTER 5. PROVISIONING SOLVER 61

be used without significantly affecting the solvers’ effectiveness. The practical implication of this

design choice is that the solvers know nothing about the internals of the models or utility function.

They have no logic or rules about the likely affects of a configuration change. For example, the

capacity consumption of a dataset is a simple function of the m and n encoding parameters (see Sec-

tion 3.2), but the solvers do not have access to this information, requiring them to find space efficient

configurations by trial-and-error. While this seems extreme in the case of capacity consumption, it

is valuable for the metrics that are far less direct, such as performance.

When creating storage configurations, the goal is to create configurations that are valid and have

a high utility value. For a configuration to be valid, it must be both legal and feasible. Legal con-

figurations are those where the configuration is meaningful (i.e., the parameter values are consistent

and all datasets have been placed in the design). For example, all legal configurations must maintain

the proper relationship between m, n, and l (i.e., 1 ≤ m ≤ n ≤ l), and all datasets must be assigned

in the storage system. As long as a configuration is legal, the system models and utility functions

are able to analyze the configuration. The solvers must always produce legal configurations. This

notion of “legal” configurations provides a baseline set of assumptions that ease the construction of

storage system models. Before a configuration can be considered valid, it must feasible in addition

to just legal. The feasibility of a configuration is related to whether it satisfies system constraints.

Currently, the only feasibility constraint is capacity consumption. Every storage node must be able

to store at least as much data as the configuration has assigned to it.

5.1 Exhaustive solver

The most obvious solution method to use is exhaustive search. The exhaustive solver generates

every possible legal configuration, evaluates it, and remembers the valid configuration with the

highest utility. Of the solvers created for this work, this is the only one that is guaranteed to find the

optimal configuration. The price for that guarantee is an extremely long run time due to the large

number of configurations that are analyzed.

The configurations are generated via nested loops. The outer-most loop controls l, searching

from one to the total number of storage nodes allowed in the configuration, S. Inside this loop is

another for n, running from one to l. The third loop controls m, between one and n. These three

loops exhaustively generate values for the encoding parameters. Inside these, there is one final loop

that controls which of the S storage nodes receive the l data fragments. This leads to
(

S
l

)

choices

in this inner-most loop. Each additional dataset that must be assigned causes this set of loops to

CHAPTER 5. PROVISIONING SOLVER 62

be nested an additional time, causing an exponential increase in the number of configurations. For

storage designs that use all the same type of storage node (or have a limited number of types), this

method generates and analyzes a large number of equivalent configurations, greatly decreasing its

efficiency. One possible enhancement would be to generate configurations in a way that ensures

uniqueness.

Based on the description above, the number of configurations analyzed by the exhaustive solver

is (d is the number of datasets):

(

S

∑
l=1

l

∑
n=1

n

∑
m=1

S!

l!(S− l)!

)d

=

(

S

∑
l=1

l

∑
n=1

nS!

l!(S− l)!

)d

=

(

S

∑
l=1

l (l+1)S!

2l!(S− l)!

)d

=

(

S

∑
l=1

(l+1)S!

2(l−1)!(S− l)!

)d

For a storage system with two workloads and up to eight storage nodes, there are a total of

7.9 million possible configurations. Because of the large configuration space, the usefulness of

this solver is limited to examining small configurations to evaluate other, more efficient, solution

techniques.

5.2 Random solver

Instead of exhaustively exploring the configuration space, the random solver samples a number of

random storage system designs, returning the best design encountered after a fixed number of valid

designs have been analyzed. The random solver is one of the simplest solution techniques that could

be employed. It makes no use of the feedback provided by the utility score other than to remember

the best configuration found.

The effectiveness of this solver is highly influenced by the particular problem. Since the solver

is randomly sampling the configuration space, the distribution of utility values across that space

affects how good a solution it can be expected to find. For example, some problems have a large

CHAPTER 5. PROVISIONING SOLVER 63

number of solutions that are within a small interval of the optimal utility. In this case, the solver

should perform well (i.e., produce a solution that is near optimal). Other problems have very few

configurations that are close to optimal, so the chance that the random solver will find one is low.

This expectation could be quantified by examining the cumulative distribution function (CDF)

of utility across all valid configurations for a given problem. If the goal is to produce a solution that

is at least 90% of optimal, by examining the CDF at that fraction of optimal (i.e., f =CDF(0.9opt)),

it is possible estimate the number of configurations that the solver would need to evaluate. From

the definition of the CDF, f is the fraction of configurations that are more than this threshold from

optimal, meaning there is probability f that a random configuration will fail to be at least 90% of

optimal. After i iterations of the solver, the probability that none of the configurations analyzed are

within this threshold is p = f i. One would typically want to choose a small value for p such as 0.1

and solve for i. Therefore, if t is the tolerance from optimal, above, i can be calculated as:

i =
ln(p)

ln(CDF(t ·opt))

While this expression can be used to gauge the sensitivity of the solver to the shape of the CDF and

the desired tolerances, it is unlikely to be of use in practice because it requires both the optimal and

the CDF of utility to be known. Both of these can only be generated through exhaustive search of

the space, obviating the need to solve the problem again.

5.2.1 Generating configurations

The above discussion assumes the random configurations are sampled uniformly from the space of

all valid configurations. Unfortunately, uniform sampling of the dataset encodings and locations is

not trivial. There are two steps to the process. First, legal configurations need to be generated, and

second, only the feasible subset of these can be used by the solver. The random solver addresses the

second step by simply not counting an infeasible solution and drawing another random configura-

tion. This lengthens the run time based on the fraction of legal configurations that are feasible, and

can have a significant impact when this ratio is low, such as when the raw dataset size is close to the

raw storage system capacity.

To illustrate the difficulty in generating legal configurations uniformly, consider a restricted

example with one dataset and two total storage nodes. The dataset may use configurations from

1-of-1 declustered across 1 to 2-of-2 declustered across 2, which is a total of four different data

CHAPTER 5. PROVISIONING SOLVER 64

encodings. All of these encodings with the exception of 1-of-1 declustered across 1 have only one

possible configuration, but the 1-of-1 declustered across 1 case has two, producing a total of five

legal configurations that must be sampled uniformly. The naive method for generating random

configurations would begin by selecting one of the encoding parameters uniformly (e.g., m), then

constraining the choices for the others based on this result. Unfortunately, there is no ordering of m,

n, and l that makes this approach suitable. Instead, the encoding parameters must be weighted based

on their likelihood across the entire configuration space. For example, if choosingm first, there must

be a probability of 4
5 to choose m= 1 and 1

5 to choose m= 2. Based on the outcome of the m choice,

there are analogous weightings for n and finally l. Once the encoding parameters are chosen, l out

of the S total storage nodes can be selected uniformly to hold the data fragments. The random solver

pre-computes the tree of weights form, n, and l at the beginning of each run, allowing the generation

of individual configurations to execute quickly. In the evaluations of the solver, the magnitude of

l is constrained to be less than or equal to eight, limiting the size of the lookup table. Eight was

chosen for two reasons. First, eight is the limit of the exhaustive solver with two workloads to

execute within a reasonable runtime. Second, in the Ursa Minor prototype, performance degrades

when large numbers of storage nodes send data to a single client simultaneously, and eight exceeds

this limit, making further predictions meaningless. This performance anomaly in Ursa Minor is due

to the Incast Problem [Nagle et al., 2004].

5.3 Greedy solver

The number of configurations examined by the exhaustive solver is strongly influenced by the num-

ber of datasets that are being placed in the system. Specifically, the number of configurations is

exponential in the number of datasets. The greedy solver is an attempt to constrain the number of

configurations that are searched by optimizing the datasets individually instead of examining the

“cross product” of all possible combinations. To this end, the greedy solver uses the exhaustive

solver to optimize individual datasets, one at a time.

The greedy solver begins by generating a random order in which to optimize the individual

datasets. This ordering then remains constant throughout the solver’s execution. All datasets are

initially placed randomly using the algorithms of the random solver. This initial random placement

ensures a legal starting configuration for each dataset. This is required because all datasets must

be placed before a configuration can be evaluated by the system models. Beginning with the first

dataset, the greedy solver calls the exhaustive solver to find its optimal data distribution. The ex-

CHAPTER 5. PROVISIONING SOLVER 65

haustive search only changes the dataset currently being optimized, limiting the search for this step

to
S

∑
l=1

(l+1)S!

2(l−1)!(S− l)!

possibilities. This first dataset is assigned to the optimal configuration generated by the search and

the solver proceeds to the second dataset, optimizing it while holding all others (including the newly

optimized first dataset) constant. This sequence proceeds until all datasets have been optimized

once. Starting again from the beginning of the list, each dataset is optimized again. This continues

until the solver is able to make a complete pass through all datasets without finding a new optimal

configuration for any individual dataset. At this point, a local maximum has been reached, and the

solver terminates.

This greedy approach to creating storage configurations optimizes each dataset individually

instead of examining all possibilities simultaneously. This reduces the number of configurations

searched by removing the exponential factor related to the number of datasets, instead trading it for

a multiplicative factor (i.e., the d datasets are optimized sequentially). This changes the number of

configurations that are examined to:

di
S

∑
l=1

(l+1)S!

2(l−1)!(S− l)!

where d is the number of datasets and i is the number of iterations that occur before a local maximum

is reached.

This algorithm is randomized based on the order in which the datasets are optimized and the

initial random configuration that is chosen as the starting point. Changing either of these can lead

to different locally optimal storage configurations.

5.4 Genetic solver

A genetic algorithm (GA) is an optimization technique that attempts to generate good solutions

using techniques that are loosely based on natural selection and reproduction. Mitchell [1997] pro-

vides a general overview of genetic algorithms and discusses the main steps used for this type of

optimization. The basic premise is that a number of potential solutions to the optimization problem

form a population. There is some fitness function that is able to evaluate these candidate configura-

tions, judging how well each candidate satisfies the problem’s objective. Based on this evaluation,

CHAPTER 5. PROVISIONING SOLVER 66

candidates are chosen, using a selection function, for the next generation of solutions, biasing the

selection toward the most fit candidates. These candidates are combined together using a crossover

operator to mix their characteristics. They are also mutated to further explore the solution space.

This process of evaluating, selecting, combining, and mutating continues through a number of gen-

erations of solutions until some stopping condition is reached. GAs have been applied successfully

to many problems, including assigning portions of a database to different sites based on access pat-

terns and network topologies [Corcoran and Hale, 1994] and for adjusting batch scheduling on a

supercomputer to reduce wasted time [Feitelson and Naaman, 1999], among many others.

To create an effective GA, the functions and operators mentioned above must be defined to fit

the details of the problem. For example, a fitness function must be created to evaluate configurations

based on how well they solve the specific problem. The crossover operator should be able to struc-

turally combine two different solutions, producing two new ones that are, ideally, both valid and

exhibit a combination of the properties from their parents. The mutation operator needs to be able

to make small changes to configurations in a manner that allows exploration of the configuration

space while still producing valid configurations. The choice of how configurations are represented

within the solver influence the ease with which these operations can be implemented.

5.4.1 Configuration representation

One of the first decisions when implementing a genetic algorithm is how to represent the potential

configuration space. The goal is to use a compact representation that, based on its structure, ensures

configurations are valid and provides access to the various configuration (tuning) parameters. The

closer the representation is to meeting this ideal, the simpler (and more efficient) the crossover and

mutation operations can be. In the general case, a configuration is represented as a fixed length

vector of symbols, following the analogy that a chromosome is composed of a series of genes.

Instead of using a strict vector representation for the storage system configuration, it is more

naturally encoded as a matrix. This matrix has one row for each dataset and one column for each

storage node. Assuming binary values for each cell of the matrix, the representation naturally

assigns a meaning to each position — the value at row d, column s controls whether dataset d

is stored on storage node s. In effect, this matrix determines the location portion of each dataset’s

distribution. Unfortunately, it does nothing to represent the values ofm and n. These values could be

represented separately from this matrix (e.g., augmenting each row of the matrix with two integers,

one for each), but this presents difficulty in ensuring that a configuration is legal. After each change

CHAPTER 5. PROVISIONING SOLVER 67

to the matrix, the solver would need to verify that m≤ n and that n is less than or equal to the total

number of “1’s” in the corresponding matrix row. If a violation were found, it would need to be fixed

because a configuration that is not legal cannot be evaluated. A better solution is to incorporate the

values of m and n directly into the matrix, structurally ensuring the relationship between m, n, and

l.

Instead of using just binary values, each location in the matrix may take on integer values

between zero and three, inclusive. Just as above, a non-zero value at a particular location is used

to indicate that a particular dataset (represented by the row) is stored on a specific storage node

(represented by the column). The values of the m and n encoding parameters for a dataset are the

number of entries in that dataset’s row with values greater than two and one, respectively. For

example, a row of [0 3 2 2 1] denotes an encoding of 1-of-3, with fragments stored on nodes two,

three, four, and five (l = 4). This matrix representation was chosen because of the relative ease of

maintaining the invariant: m≤ n≤ l. This works because incrementingm (placing a value of three in

a row) also serves to increment n and assign a fragment location for the dataset. The only remaining

condition that must be maintained to create legal configurations is that the value of m must be at

least one. That is, there must be at least one “3” in each row of the matrix for the encoding to be

valid. This condition can be verified relatively easily.

5.4.2 Fitness function

The fitness value determines how likely a candidate is to be selected for reproduction into the next

generation. It accounts for both the utility of the candidate as well as the feasibility of the solution.

Due to capacity constraints, not all configurations are feasible. To bias the solution toward feasible,

high-utility solutions, the fitness value is:

fitness =

utility if(utility≥ 2 & OCC = 0)
1

1+OCC
if(OCC > 0)

1
3−utility

+1 otherwise

where OCC is the sum of the over-committed capacity from the individual storage nodes (in MB).

When the solution is feasible, OCC = 0 (no storage nodes are over-committed). For infeasible

solutions, the fitness value will be between zero and one, with configurations having less over-

committed capacity taking fitness values closer to one. This provides a bias toward less infeasible

configurations. The third clause compresses utility values that are less than two (i.e., between two

CHAPTER 5. PROVISIONING SOLVER 68

and negative infinity) into the range of two to one. This ensures that feasible configurations always

have higher fitness than infeasible configurations.

While this work has incorporated the feasibility of solutions into the fitness value, there are

other approaches for encouraging feasible solutions. Chu and Beasley [1997] examined GAs for

solving the Generalized Assignment Problem, and they added a specific step to the GA loop that

was a domain-specific mutation that attempted to move candidates toward more feasible solutions.

Another approach they used was to maintain “unfitness” values in addition to the standard fitness

value. For single population GAs (where a single population is evolved as opposed to having dis-

crete generations), the unfitness value can be used to control which candidates are replaced. Feltl

and Raidl [2004] improved on these results using a penalty scheme similar to what is used above to

handle capacity constraints.

5.4.3 Selection function

Using the fitness value for guidance, a selection function probabilistically chooses candidates to

use as a basis for the next generation of solutions. There are two main techniques for using the

fitness value to guide the selection. The first technique uses the magnitude of the fitness value as the

weighting for selecting candidates. For example, if there is one candidate with a fitness value of 100

and another with fitness 50, the candidate with value 100 would be twice as likely to be selected as

the one with a value of 50. This selection technique that is based on the relative magnitude of the

fitness values is commonly known as Roulette selection. The second selection technique chooses

candidates based on their rank order within the population, using the fitness values only to establish

that ordering. One method of implementing this called Tournament Selection [Brindle, 1981]. In

tournament selection, two candidates are chosen (uniformly) randomly from the population, and the

algorithm returns the candidate with the higher fitness value.

The solver can use either Tournament or Roulette selection algorithms, but it defaults to Tourna-

ment. Empirically, the solver performs better using Tournament selection for utility functions that

are ordinal such as the priority-based utility discussed in Section 4.4. The reason for this better per-

formance is that once many of the objectives are satisfied, the magnitude of the utility value changes

very little, causing Roulette selection to treat them nearly identically. Tournament selection is still

able to strongly distinguish between them, allowing much more efficient convergence of the solver.

Roulette selection has another disadvantage. Since it uses the magnitude of the fitness values, all

CHAPTER 5. PROVISIONING SOLVER 69

fitness values must be greater than zero. This was the motivation for using zero as the bound on

fitness, above.

5.4.4 Crossover

The crossover operation combines two candidates from the current generation to produce two new

candidates for the next generation. The intuition behind this step is to create new solutions that

have properties from both of the original candidates (potentially achieving the best of both). There

are several methods for performing the crossover operation, with the most common being single-

point crossover. With this method, a random point is chosen along the vector representation of the

candidate, and the alleles after this point are swapped between the two candidates. There are also

variants that perform multi-point crossover. The method chosen for this work is uniform crossover.

In uniform crossover, each allele has an independent 50% probability of coming from either original

candidate. The algorithm used here is a slight variation, wherein, instead of treating each position

in the configuration matrix as an independent position for crossover, it works at the level of a whole

row at a time. In effect, this performs the crossover at the “dataset level” instead of on each location.

This approach was chosen for two reasons. First, because it does not change the data distribution

and only moves it between configurations, it cannot create an illegal configuration. Second, the

individual values within a row have little meaning when taken independently. That is, the value of

m and n depend on the whole row, not just a single value. For this reason, combining at the dataset

level is more likely to form a new set of candidates with properties of the two original.

5.4.5 Mutation

The primary purpose of the mutation operator is to add randomness to the search. The algorithm

used here operates on a single candidate at a time, changing a random location in the configuration

matrix to a new, random value. This change can add or remove a dataset from a storage node if

the value transitions to or from zero. It can also affect m, n, or both depending on the starting and

ending values. Because it is changing the data encoding, the algorithm must ensure the resulting

new encoding is valid (i.e., m≥ 1). Before a particular value is changed, it is verified that the current

value, if it is a “3,” is not the only “3” in that row. If a conflict is found, a different location is chosen

for mutation. This does place some restriction on 1-of-n encodings, forcing them to transition to

a m = 2 encoding before the storage node with the “3” can be vacated. In practice, this does not

CHAPTER 5. PROVISIONING SOLVER 70

appear to be a problem. An analogous check is done to limit the number of storage nodes per data

distribution to some maximum value, typically eight.

In addition to this “single value” mutation, a mutation operator was created that chooses one

of the datasets at random and completely randomized it (subject to the same constraints as above).

This mutation operator did not perform well in the configurations tested as it caused too much of a

change to the configuration.

5.4.6 Parameter tuning and stopping criteria

While GAs can be very effective for some optimization problems, they have a number of tuning

parameters that can have an effect on their performance. Already mentioned were the choices of

selection function, crossover operator, and mutation operator. Holding those constant, there are a

number of other, lower-level, parameters to examine. First, the GA operates on a population of can-

didates. The size of this population must be chosen — large enough for a diverse set of alternatives

to be examined, but large populations take more time to evaluate, constraining the number of gener-

ations that are examined per unit of time. The second parameter is the crossover probability. When

a new population is created, some of this new population can be straight copies from the previous,

and the rest have the crossover operator applied. The third parameter of interest is the fraction of

candidates that are modified by the mutation operator.

When evaluating the choice for each of these parameters, there are two metrics of interest. First,

how good is the solution that the algorithm produces? Various (improper) settings could cause the

GA to not converge or become stuck at a local maximum. Second, how long does it take to produce

a solution? Again, a poor choice of parameters could cause the GA to converge very slowly, taking

an excessive amount of time to find a solution.

In order to judge these two criteria, it is necessary to determine some stopping criteria for the

algorithm. Since there is, in general, no way to know when an optimal configuration is reached,

the stopping condition is somewhat arbitrary. Common choices are to run for a fixed period of

time, a fixed number of generations, or until the solver’s progress slows below some threshold.

For this evaluation, the latter is used. Specifically, if no new “best” configuration is found after

a fixed number of generations since the last, the GA will terminate. The baseline configuration

(before formal tuning) used a population size of 200. The stopping condition was chosen to be

20 generations of no additional progress. This equates to 200× 20 = 4000 configurations being

evaluated (with no additional progress).

CHAPTER 5. PROVISIONING SOLVER 71

A sensitivity analysis was conducted for each of these three parameters (mutation probability,

crossover probability, and population size) by evaluating the quality of the solutions produced (final

utility and total evaluations to produce the solution) on four different problem sizes. The different

scenarios are created by varying the number of datasets and storage nodes in the system configura-

tion. The configuration consists of one “standard” client and one “6450” workload per dataset. The

datasets are 5 GB each, and the storage node is of type “15k73.” See Appendix A for the specifi-

cations of the clients, workloads, and storage nodes. The four problem sizes were created by using

either 10 or 50 clients/workloads/datasets and 10 or 50 storage nodes. The utility function used for

this evaluation is:

U(·) = ∑
WL, DS

(

Uperf (·)+Uav (·)+Urel (·)
)

Uperf (·) =($0.001) IOPSWL AVDS

(

3600 s

hr

)(

24 hr

day

)(

365.25 day

yr

)

Uav (·) =

(

−$10,000

hr

)

(1−AVDS)

(

24 hr

day

)(

365.25 day

yr

)

Urel (·) =(−$100 M)AFRDS

Note that the utility functions for performance, availability, and reliability are summed across all

the workloads/datasets in the particular scenario. Figure 5.1 presents the average of 10 trials with

each of a 0.2, 0.4, 0.6, 0.8, and 1.0 probability of mutating a candidate configuration. The other

parameters used were a probability of 1.0 for crossover and a population size of 200. Comparing

the mutation rate based on the quality of the solution, it can be seen in the graphs that the quality

of the solution differs by a maximum of seven percent. In most cases, it differs by much less.

However, the time to create the solution differs by much more (as much as 85%). Based on these

two observations, the final mutation rate was chosen to be 1.0, based solely on the time to create the

solution.

The same set of scenarios were run again, varying the crossover rate between 0.2 and 1.0. This

used a mutation rate of 1.0 and a population size of 200. As with the previous experiment, the

quality of the solution differed relatively little based on the crossover rate, but the rate did influence

the time to create the solution. The proper choice of crossover rate is not as clear cut as the mutation

rate, but based on Figure 5.2, a crossover rate of 1.0 was chosen.

The final parameter evaluated was the size of the population. This experiment used population

sizes of 25, 50, 100, 200, 400, 700, and 1000. The stopping condition for each parameter value was

CHAPTER 5. PROVISIONING SOLVER 72

0 5000 10000 15000 20000
Evaluations

0

5e+07

1e+08

1.5e+08

2e+08

U
ti
lit

y

0.2
0.4
0.6
0.8
1.0

(a) 10 storage nodes, 10 datasets

0 50000 100000 150000 200000
Evaluations

0

5e+07

1e+08

1.5e+08

2e+08

U
ti
lit

y

0.2
0.4
0.6
0.8
1.0

(b) 10 storage nodes, 50 datasets

0 15000 30000 45000 60000 75000
Evaluations

0

5e+07

1e+08

1.5e+08

2e+08

U
ti
lit

y

0.2
0.4
0.6
0.8
1.0

(c) 50 storage nodes, 10 datasets

0 25000 50000 75000 100000
Evaluations

0

2e+08

4e+08

6e+08

8e+08

U
ti
lit

y

0.2
0.4
0.6
0.8
1.0

(d) 50 storage nodes, 50 datasets

Figure 5.1: Sensitivity to mutation probability – The four graphs show the

utility of the final solution and the number of configurations evaluated (popula-

tion size times total generations). Better tuning parameters lead to data points in

the upper left of the graph (i.e., generating a better solution in less time). Each

subgraph is for one of the four problem sizes, and each data point is labeled with

the mutation probability used. All points are the average of ten trials.

adjusted to compensate for the different population sizes, keeping the number of candidates eval-

uated without making additional progress approximately constant. The formula used to determine

the number of generations that would serve as the stopping condition was G = ⌈4000/p⌉, where p

is the population size. A population size of 100 with a stopping criteria of 40 generations with no

new best solution shows a clear benefit in solution time. As with the other parameters, it compares

reasonably in solution quality. See Figure 5.3 for the specific results.

CHAPTER 5. PROVISIONING SOLVER 73

0 5000 10000 15000 20000 25000
Evaluations

0

5e+07

1e+08

1.5e+08

2e+08

U
ti
lit

y

0.2
0.4
0.6
0.8
1.0

(a) 10 storage nodes, 10 datasets

0 50000 100000 150000
Evaluations

0

5e+07

1e+08

1.5e+08

2e+08

U
ti
lit

y

0.2
0.4
0.6
0.8
1.0

(b) 10 storage nodes, 50 datasets

0 15000 30000 45000 60000 75000
Evaluations

0

5e+07

1e+08

1.5e+08

2e+08

U
ti
lit

y

0.2
0.4
0.6
0.8
1.0

(c) 50 storage nodes, 10 datasets

0 50000 100000 150000
Evaluations

0

2e+08

4e+08

6e+08

8e+08

U
ti
lit

y

0.2
0.4
0.6
0.8
1.0

(d) 50 storage nodes, 50 datasets

Figure 5.2: Sensitivity to crossover probability – The four graphs show the

utility of the final solution and the number of configurations evaluated (popula-

tion size times total generations). Better tuning parameters lead to data points in

the upper left of the graph (i.e., generating a better solution in less time). Each

subgraph is for one of the four problem sizes, and each data point is labeled with

the crossover probability used. All points are the average of ten trials.

5.5 Comparison of solvers

Each of the solvers described above are positioned at different points in the design space of opti-

mization techniques. The main axes for evaluation of these solvers are the quality of the solution

that they produce and how long they require to produce that solution. At one extreme is the exhaus-

tive solver. It is the only algorithm presented that is guaranteed to produce the optimal solution. The

price paid for this guarantee is an impractical execution time for all but the smallest of problems.

CHAPTER 5. PROVISIONING SOLVER 74

0 5000 10000 15000 20000 25000
Evaluations

0

5e+07

1e+08

1.5e+08

2e+08

U
ti
lit

y

25
50
100
200
400
700
1000

(a) 10 storage nodes, 10 datasets

0 25000 50000 75000 100000 125000
Evaluations

0

5e+07

1e+08

1.5e+08

2e+08

U
ti
lit

y

25
50
100
200
400
700
1000

(b) 10 storage nodes, 50 datasets

0 20000 40000 60000 80000
Evaluations

0

5e+07

1e+08

1.5e+08

2e+08

U
ti
lit

y

25
50
100
200
400
700
1000

(c) 50 storage nodes, 10 datasets

0 20000 40000 60000 80000
Evaluations

0

2e+08

4e+08

6e+08

8e+08

U
ti
lit

y

25
50
100
200
400
700
1000

(d) 50 storage nodes, 50 datasets

Figure 5.3: Sensitivity to population size – The four graphs show the utility

of the final solution and the number of configurations evaluated (population size

times total generations). Better tuning parameters lead to data points in the upper

left of the graph (i.e., generating a better solution in less time). Each subgraph is

for one of the four problem sizes, and each data point is labeled with the popula-

tion size used. All points are the average of ten trials.

The other algorithms sacrifice the guarantee of optimality to achieve better scalability. For example,

the greedy solver optimizes each dataset independently, greatly improving the execution time, but

the quality of the solution suffers significantly. The problem for the greedy solver arises because

it is unable to move other workloads to make room for the one currently being optimized. This

prevents resources from being effectively moved from one dataset to another, leading to suboptimal

designs. Unfortunately, this design trade-off does not improve the execution time enough for it to

be useful. While it scales approximately linearly with the number of datasets, it still has factorial

CHAPTER 5. PROVISIONING SOLVER 75

scaling with respect to the number of storage nodes.

The random and genetic solvers have the property that they can trade off runtime against the

quality of the solution. For the random solver, the characteristics of the trade-off are determined

by the distribution of utility values across all possible configurations, as discussed in Section 5.2.

This dependence on the distribution of utility means it performs poorly for problems where there

are relatively few solutions that are near optimal.

The genetic solver, which also has a significant random component, is much better at directing

the search for solutions, making it perform well even when high quality solutions are very rare. To

illustrate this, a scenario was created where the number of clients, datasets, and workloads are scaled

together with a 1:1:1 ratio to control the problem’s difficulty. The utility function is constructed so

that it is possible to predict the number of “desirable” configurations as a fraction of the total num-

ber of possible storage configurations. The definition of “desirable” is that a dataset should have at

least 4 “nines” of availability. Availability is used for this experiment because the data distribution

is the sole determinant of its value, and one dataset’s distribution does not affect another’s availabil-

ity. Using eight storage nodes of type “s500” and performing an exhaustive search with a single

dataset, 464 of 2816 or 16.5% of the possible distributions meet the 4 nines criteria. By scaling the

number of datasets in the scenario, solutions where all datasets have 4 nines of availability can be

made an arbitrarily small fraction of the possible configurations. For example, with three datasets,

(464/2816)3 = 0.4% of the possible configurations have 4 nines for all three workloads.

The utility function for this scenario is:

U =
1

S
·

S

∑
i=1

min(NINES(DSi) ,4)

S is the scale factor, corresponding to the number of datasets. This utility function will achieve its

maximum value, four, when all datasets achieve at least 4 nines of availability. To ensure all possible

data distributions are valid as the number of datasets are scaled, the size of the datasets relative to

storage nodes are chosen to ensure the system is not capacity constrained.

Figure 5.4 shows how the GA solver performs as the number of datasets is scaled (from 5 up

to 50). The graph plots the difficulty (the reciprocal of the fraction of configurations with 4 nines)

of finding a 4 nines solution versus the number of configurations the solver evaluates before finding

the first. It can be seen that exponential increases in the rarity of “good” solutions result in an

approximately linear growth in the number of configurations that must be evaluated by the solver.

CHAPTER 5. PROVISIONING SOLVER 76

1 1e+08 1e+16 1e+24 1e+32 1e+40
Problem difficulty

0

2000

4000

6000

8000

E
v
a

lu
a

ti
o

n
s

Figure 5.4: Finding rare solutions – This graph shows how the solution time

changes as a function of how difficult the problem is to solve. The x-axis is the

inverse probability that a random configuration is a valid solution (1
Pr[valid solution]).

The graph shows the mean number (across 100 trials) of configurations that are

evaluated by the GA solver before finding a valid solution. The error bars indicate

the 5th and 95th percentiles.

Such linear growth (as opposed to exponential, or worse) can be explained by revisiting how the

problem was constructed. The utility function was created such that the individual datasets are

independent. The primary reason for this, as stated above, was to allow the number of “good”

solutions to be easily calculated, but this independence also allows the optimization of the datasets

to be performed independently (while the GA actually optimizes them all together, the analogy is

reasonable). The resulting linear growth for this problem is quite encouraging, as the GA was able

to automatically capitalize on the inherent independence of the datasets.

Another interpretation of this scaling graph is to consider it as a proxy for how well the GA

solver converges toward the optimal configuration for this particular problem. Using the results

of Figure 5.4 and examining the second data point, after just an average of 1016 evaluations, the

algorithm has converged to the point where only one in 6.8x107 configurations would be as good

or better. Likewise, for the final data point, in 5731 evaluations, it has converged to within one in

1.4x1039. For the reasons cited above, the linear speed of convergence may not hold, but for this

problem, the result is encouraging.

A more straightforward example of the convergence is shown in Figure 5.5. This experiment

uses two clients, each of which has a single workload, and workloads each access their own dataset.

CHAPTER 5. PROVISIONING SOLVER 77

0 1000 2000 3000 4000
Evaluations

0

2e+07

4e+07

6e+07

U
ti
lit

y

optimal

Figure 5.5: Convergence of the genetic solver – This graph shows how quickly

the solver converges toward the optimal storage configuration. The line is the

median over 100 trials, and the error bars indicate the 5th and 95th percentiles.

The datasets are constrained to encoding that use no more than l = 8 storage nodes. The storage

nodes are of type “s500” from Table A.2, and the utility function is:

Utility =Urevenue +Udataloss +Udowntime

Urevenue = $0.001 ·AVDS · IOPSWL ·

(

3.2x107 s

1 yr

)

Udataloss = −$100 M ·AFRDS

Udowntime =

(

−$10,000

hr

)

· (1−AVDS) ·

(

8766 hr

1 yr

)

The exhaustive solution produces a utility of $6.95x107/yr, using an encoding of 1-of-2 declus-

tered across 4 storage nodes, and the two datasets are segregated onto their own set of 4 storage

nodes. This optimal utility is shown as the dotted line near the top of the graph. The GA solver ap-

proaches this value quickly. Within five generations (500 total configurations evaluated), the median

of 100 trials is within 10% of the optimum, and the bottom 5% achieves this level after just twelve

generations (1200 total evaluations). Allowing for equivalent configurations, 3336 out of 7.9x106

total configurations are within 10% of the optimum. The utility values across the configuration

space range from −$7.23x107/yr to $6.95x107/yr.

CHAPTER 5. PROVISIONING SOLVER 78

0 10 20 30 40 50
Problem size (datasets)

0

5

10

15

20

25

T
im

e
 (

s
)

Models
Utility
Genetic solver

Figure 5.6: Genetic solver performance – This graph shows the breakdown of

runtime between the models, utility function, and the genetic solver. All times are

averages for evaluating a single population of 100 candidates. The time required

to evaluate the utility function ranges from 7.6 ms to 45 ms for the 5 and 50 dataset

sizes, respectively.

5.5.1 Genetic solver performance

The time required to generate a solution can be divided into three portions, corresponding to the

three main parts of the provisioning loop, the models, the utility function, and the solver. Chapter 3

presented the performance for the models in isolation, and this section puts that performance data

into context within the overall provisioning solver. Using the “4 nines” scenario above, the size of

the system and the size of the utility function scales with the scaling factor S. Figure 5.6 shows

the wall-clock time required per generation for the genetic solver. This time is then broken into

components for the models, the utility calculation, and the overhead of the genetic solver, itself. The

portion of the time spent evaluating the utility function is too small relative to the other components

to be visible in the graph. These measurements were taken on a Dell PowerEdge 1855 with dual

3.40 GHz Intel Xeon CPUs and 3 GB of RAM running Linux kernel version 2.2.16 and Perl 5.8.8.

The provisioning tool used only one of the two CPUs.

CHAPTER 5. PROVISIONING SOLVER 79

5.6 Overview of other potential optimization techniques

The genetic algorithm used for this work is just one of a number of potential optimization tech-

niques. Other derivative-free techniques may also be appropriate. These techniques typically do not

guarantee an optimal solution. Instead, they locate local maxima (or minima), and optionally use

some sort of “restart” or “jump” to try to locate successively better solutions. While they do not

guarantee an optimal solution, they have been applied successfully to a wide range of difficult to

optimize problems. For example, the Disk Array Designer [Anderson et al., 2005] uses randomiza-

tion to create an initial assignment then refines the configuration via several refinement operations

that remove, randomize, then re-assign datasets.

For optimization problems of certain classes, more direct techniques can be used to find the op-

timal solution. For example, Linear Programming can be used for problems with linear constraints

and objective functions. Other possibilities such as Integer Programming or Quadratic Programming

have analogous restrictions on the problem formulation. Unfortunately, storage system models do

not fit the restrictions of these techniques, making them inappropriate for use here.

5.7 Summary

Of the techniques evaluated in this work, the genetic solver has the best mix of solution quality

and efficiency. It tends to produce better solutions than either the greedy or random solvers, and

its running time is much better than the exhaustive approach. For the experiments in the following

chapters, the exhaustive solver is used where practical, while the genetic solver is used on the larger

problems.

Chapter 6

Provisioning and initial configuration

The first step of being able to control a distributed storage system is to be able to determine a suitable

static configuration based on a description of the available components and the workloads/datasets

to be served. This chapter puts together the components from the previous three (system models,

utility, and an optimization technique) to evaluate several case studies of using utility for storage

provisioning.

The first example shows how utility allows a structured approach to making trade-offs across

different storage system metrics. The benefit to this structured approach is that it does not rely on

intuition or rules-of-thumb that may or may not hold in a given environment. It allows trade-offs to

be evaluated based on their merits in the particular environment.

The second example highlights a common problem with provisioning storage systems: handling

external constraints. Being able to create optimal storage system configurations is a good starting

point, but real-world environments can be constrained in many ways. This scenario shows how

utility continues to provide guidance as external constraints force trade-offs to be made.

The third example illustrates how the cost of storage hardware can affect the chosen solution.

Minimum cost provisioning systems are not affected by a uniform change in the cost of system

components (i.e., they produce the same configuration). Utility, on the other hand, allows trade-offs

that consider the purchase cost of the system hardware. This leads to situations where a price re-

duction (or increase) in hardware could change the optimal storage configuration because it changes

the cost/benefit analysis of adding or removing components.

80

CHAPTER 6. PROVISIONING AND INITIAL CONFIGURATION 81

6.1 Trade-offs across metrics

Provisioning and configuration decisions affect multiple system metrics simultaneously; nearly ev-

ery choice involves a trade-off. Using utility, it is possible to take a holistic view of the problem and

make cost-effective choices.

Conventional wisdom suggests that “more important” datasets and workloads should be more

available and reliable and that the associated storage system is likely to cost more to purchase

and run. To evaluate this hypothesis, two scenarios were compared. Each scenario contained two

identical workloads with corresponding datasets.

The utility functions used for the two scenarios are similar to the previous examples, having a

penalty of $10,000 per hour of downtime and $100 M penalty for data loss. The cost to power the

system is also added, at a rate of $0.12 per kWh, and the purchase cost of the system (storage nodes)

is amortized over a three year expected lifetime:

U(·) =Uperf (·)+Uav (·)+Urel (·)+Upwr (·)+Upurchase (·)

Uperf (IOPSWL,AVDS) =(see below)

Uavail (AVDS) =

(

−$8.8x107

yr

)

(1−AVDS)

Urel (AFRDS) =(−$100 M)AFRDS

Upwr (P) =

(

−$1.05

W·yr

)

P

Upurchase (C) =

(

−C

3 yr

)

CHAPTER 6. PROVISIONING AND INITIAL CONFIGURATION 82

The two scenarios differ in the revenue they generate. The first generates 0.1¢ per I/O while the

second only generates 0.01¢:

Uperf 0.1 (IOPSWL,AVDS) =($0.001) IOPSWL AVDS

(

3600 s

hr

)(

24 hr

day

)(

365.25 day

yr

)

=

(

3.2x104 s

yr

)

IOPSWL AVDS

Uperf 0.01 (IOPSWL,AVDS) =($0.0001) IOPSWL AVDS

(

3600 s

hr

)(

24 hr

day

)(

365.25 day

yr

)

=

(

3.2x103 s

yr

)

IOPSWL AVDS

Based on this revenue difference, it would be easy to assume that the workload generating more

revenue is “more important” than the other, requiring a higher (or at least the same) level of data

protection. This assumption fails to account for the compromises necessary to achieve a particular

level of availability.

Table 6.1 shows the results of provisioning these two systems. It shows both the metrics and

costs for each part of the utility function. The table shows the optimal configuration for each sce-

nario (as determined by the exhaustive solver): 1-of-2 declustered across 6 (1/2/6) for the 0.1¢

scenario and 1-of-3 declustered across 7 (1/3/7) for the 0.01¢ scenario. As a point of comparison, it

also shows the results of using the other scenario’s optimal configuration for each. Both scenarios

used “s500” storage nodes and the “rrw” workload (See Table A.2 and Table A.3).

Examining the various contributions to the total utility, it can be seen that the main trade-off

between these two scenarios is in performance versus availability. For the scenario with the higher

revenue per I/O, it is advantageous to choose the data distribution with higher performance at the

cost of lower availability (1/2/6) because the revenue generated by the extra 1250− 1041 = 209

I/Os per second per workload more than offsets the cost incurred by the extra downtime of this

configuration. For the lower revenue scenario, the extra throughput cannot offset the availability

difference, causing the lower performing, more available data distribution (1/3/7) to be preferred.

It is important to remember that these configurations are a balance of competing factors (mainly

performance and availability in this case). Taking this trade-off to an extreme, such as choosing a

very high performance data distribution with no regard to availability and reliability, results in poor

utility. For example, using a 1/1/6 distribution for the 0.1¢ scenario provides only $33.7 M/yr in

CHAPTER 6. PROVISIONING AND INITIAL CONFIGURATION 83

Table 6.1: Effect of workload importance – A workload that generates more

revenue per I/O should not necessarily have a higher level of data protection. This

table compares two scenarios that differ only in the average revenue generated

per completed I/O. The “more valuable” dataset’s optimal data distribution is less

available than that of the “less valuable” dataset because the cost of the additional

downtime is more than offset by the additional performance of a less available

data distribution. The data distributions in the table are written as: m/n/l.

Metric values 0.1¢ per I/O 0.01¢ per I/O

Distribution 1/2/6 1/3/7 1/2/6 (opt) 1/3/7 1/2/6 1/3/7 (opt)

Performance 1250 IO/s 1041 IO/s $76.3 M $65.4 M $7.6 M $6.5 M
Availability 1.5 nines 2.4 nines −$2.8 M −$329 k −$2.8 M −$329 k

Reliability 2.0x10−6 afr 1.1x10−10 afr −$407 −$0.02 −$407 −$0.02
Power 600 W 700 W −$631 −$756 −$631 −$756

Purchase cost $60,000 $70,000 −$20 k −$23 k −$20 k −$23 k

Total utility $73.4 M $65.1 M $4.7 M $6.2 M

utility because the reliability and availability costs now dominate.

Sacrificing availability for performance in a business scenario goes against the conventional wis-

dom of storage provisioning which typically places a strict ordering to availability and performance

objectives. By using utility to analyze potential configurations, the multiple competing objectives

can be examined analytically, providing evidence to explain and justify a particular storage solution.

6.2 Storage on a budget

Even with the ability to quantify the costs and benefits of a particular storage solution, it is not

always possible for a system administrator to acquire the optimal system due to external constraints.

These constraints may be due to limited power, cooling, or floor space within the data center, but the

most common constraint is likely to be a limited storage budget. For example, the “optimal” storage

system for a particular scenario may be too expensive for the system administrator to purchase with

his limited budget. Presenting the administrator with this solution does him no good if he cannot

afford it. Using utility, he has the ability to scale down this solution to find one that fits within his

budget.

CHAPTER 6. PROVISIONING AND INITIAL CONFIGURATION 84

Table 6.2: Designing for limited budgets – The optimal system configuration

costs a total of $70 k, but the utility function can be used to choose the best con-

figuration that fits within other (arbitrary) budgets as well. Limiting the budget

constrains the total hardware available, and the utility function guides the solution

to make cost effective trade-offs as the system capabilities are scaled down to meet

the limited budget. Note the the storage “budget” in the table is the total cost of

the system, while the “amortized purchase cost” reflects this amount spread over

the system’s expected three year lifetime.

Budget $70 k $30 k $20 k

Distribution 1/3/7 1/2/3 1/2/2

Performance $6.5 M $6.7 M $5.8 M
Availability −$329 k −$636 k −$219 k

Reliability −$0.02 −$163 −$81

Power −$736 −$316 −$210

Amortized purchase cost −$23 k −$10 k −$6.6 k

Total utility $6.2 M/yr $6.1 M/yr $5.6 M/yr

Using the 0.01¢ scenario from above as an example, the optimal solution uses fourteen storage

nodes (seven for each dataset) and costs $70 k. For an administrator whose budget cannot accom-

modate this purchase, this solution is unworkable. Table 6.2 compares this optimal solution to two

alternatives that have constraints on the total cost of the storage hardware. The first alternative has

a limit of $30 k on the purchase cost, and the second further reduces the budget to $20 k. Notice

that these two alternatives use six and four storage nodes respectively (at $5000 each) to stay within

their budget. The “purchase cost” in the table reflects this cost spread over the system’s expected

three year lifetime.

With each reduction in budget, the total system utility decreases as expected, but the chosen

configuration at each level still balances the relevant system metrics to maximize utility as much

as possible. The reduction from optimal ($70 k) to $30 k results in choosing a configuration that

sacrifices some availability to gain performance, resulting in only a 2% loss of overall utility. The

reduction to $20 k from optimal leads to a 10% loss of utility as performance is significantly reduced.

As this example illustrates, utility presents the opportunity to make trade-offs even among non-

optimal or in less than ideal situations. This ability to account for external constraints makes utility-

based tools more helpful than those that perform only minimum cost provisioning by allowing

solutions to be identified that conform to real-world constraints.

CHAPTER 6. PROVISIONING AND INITIAL CONFIGURATION 85

6.3 Effects of hardware cost

Even without budgetary constraints, the price of the storage hardware can affect the proper solution.

Consider the trace processing example from Section 4.3.1, which is based on the activities of grad-

uate students processing file system traces. The utility function, developed earlier, is reproduced

here:

Uperf (BWWL) =

(

−$6.72x104 MB

yr·s

)(

1

BWWL

)

Uav (AVDS) =

(

−$3.94x105

yr

)

(1−AVDS)

Urel (AFRDS) =(−$525)AFRDS

Upwr (P) =

(

−$1.05

W·yr

)

P

Upurchase (C) =

(

−C

3 yr

)

The workload is modeled using “sread” from Table A.3. Provisioning this system using storage

nodes “s500e” as described in Table A.2, with a cost of $10 k per node, leads to a solution using

two storage nodes and 2-way mirroring. Table 6.3 shows a breakdown of the costs using these

“expensive” storage nodes. If the cost of a storage node is reduced to $2 k each (type “s500c”),

the total costs obviously decrease due to the lower acquisition cost (second column of Table 6.3).

More interestingly, the optimal configuration for the system also changes, because it is now cost

effective to purchase an additional storage node. By comparing the last two columns in the table,

the additional annualized cost of the third storage node ($667) is more than offset by the increase

in availability that it can contribute ($1457). In fact, this new configuration provides almost a 20%

reduction in annual costs.

6.4 Effects of model error

While researchers strive for accurate models, it is highly likely that some error will persist. This

modeling error has the potential to cause an automated provisioning system to choose suboptimal

storage configurations.

CHAPTER 6. PROVISIONING AND INITIAL CONFIGURATION 86

Table 6.3: Price affects the optimal configuration – The optimal configuration

using “expensive” ($10 k each) storage nodes is two-way mirroring, but if the cost

of the storage nodes is reduced to $2000, it is now advantageous to maintain an

additional replica of the data to increase availability. This additional storage node

results in an almost 20% decrease in expected yearly costs for the storage system.

Expensive (opt) Cheap (same) Cheap (opt)

Distribution 1/2/2 1/2/2 1/3/3

Performance −$874 −$874 −$862

Availability −$1534 −$1534 −$77

Reliability −$0 −$0 −$0

Power −$105 −$105 −$158

Purchase cost −$6667 −$1333 −$2000

Total utility −$9180/yr −$3846/yr −$3097/yr

In this experiment, error was intentionally introduced into the performance model, and the effect

on utility was examined. The 0.01¢ scenario from Section 6.1 was used as the basis for the com-

parison. It was shown previously that the optimal configuration produces a utility of $6.19x106 per

year. This experiment introduces a random, uniformly chosen, error between 0% and some max-

imum into each metric produced by the performance model. Each metric is adjusted by a unique

error percentage, and each unique system configuration is adjusted with a different set of random

errors. However, for each trial, the error in a given configuration’s metrics is held constant. These

perturbed metrics are used by the utility function and solver to generate a system configuration.

Once the solver produces a final configuration, that configuration’s true utility is calculated using

the system models without introducing error. Comparing this actual utility with the utility produced

by the solver when there is no modeling error can be used to gauge the impact of the modeling error.

Table 6.4 shows the average (true) utility produced across 100 trials for errors ranging from 10%

to 40%. The mean error for each of these experiments is the percentage by which the mean utility

is less than the optimal utility. In this scenario, these errors are considerably less than the modeling

error. The first line of the table shows the results without introducing any modeling error, and it

demonstrates that the genetic solver was able to find the optimal in each of the 100 trials (i.e., the

mean utility is the same as the minimum utility).

CHAPTER 6. PROVISIONING AND INITIAL CONFIGURATION 87

Table 6.4: Effect of model error – Error in the system models can cause the

provisioning solver to create sub-optimal solutions. This table shows the effect of

varying amounts of error on the utility of the final configuration. Between 0% and

40% error was introduced into the performance model for the 0.01¢ scenario from

Section 6.1. The mean values are based on 100 trials.

Model error Mean utility Mean decrease in utility

0% $6.19x106/yr –

10% $6.15x106/yr 0.6%

20% $6.08x106/yr 1.8%

30% $5.91x106/yr 4.5%

40% $5.78x106/yr 6.5%

Chapter 7

Migration solver

Previous chapters have shown how utility can be used to guide the initial provisioning of a cluster-

based storage system. However, once a system is deployed, the workloads and hardware, as well

as the administrator’s objectives, can change. As a result of these changes, the utility provided by

that initial configuration may decrease, and other configurations may better meet the administrator’s

objectives. The challenge is to determine whether it is advantageous to reconfigure (i.e., change the

data encodings and locations), evaluating new configurations and migration plans by balancing the

cost of reconfiguration against the potential benefit.

There has been considerable work in dynamically tuning systems to achieve a set of perfor-

mance goals. For example, Parekh et al. [2002] used control theory to maintain performance SLAs

for clients in Lotus Notes. Their work adjusted various configuration parameters to achieve a desired

response time for clients. Karlsson et al. [2004] used control theory to divide throughput between

clients according to a fixed schedule while maintaining latency targets, and Uttamchandani et al.

[2005] attempted to meet performance SLAs by throttling clients based on calculations from sup-

port vector machines. Directly related to the reconfiguration of interest in this work is Aqueduct [Lu

et al., 2002], which controlled the speed of data migration with the objective of minimizing the mi-

gration time while not violating performance requirements for foreground workloads. The majority

of the related work uses fixed performance targets and some type of control system to match it. Just

as with provisioning, this dissertation does not attempt to provide a fixed level of particular system

metrics. Instead, it attempts to choose new configurations and suitable migration plans to maximize

the utility that the system provides.

88

CHAPTER 7. MIGRATION SOLVER 89

7.1 Trade-offs involved in migration

The potential benefit of migrating data is clear — moving to a new configuration that provides

higher utility. However, much like initial provisioning, there are many trade-offs to be considered.

Choosing to migrate data has an associated cost for several system metrics, including performance

and data protection metrics. Performing a data migration quickly impacts foreground performance

more than performing it slowly, but the benefits of the new configuration are achieved sooner. Addi-

tionally, during data migration within Ursa Minor, the availability and reliability of the dataset relies

on both the new and old data distributions, hurting these metrics for the duration of the change (and

arguing for a fast data migration).

Beyond just the choice of how fast to migrate data, the cost of the migration can also influence

the choice of final configuration. For example, there may be a new, potentially optimal, config-

uration that requires all datasets to be moved. This choice must be weighed against less optimal

ending configurations that require less disruptive data migrations. All of these factors need to be

combined in a rigorous manner to permit a storage system to automatically generate and implement

an optimization plan.

Currently, system administrators are ill-equipped to thoroughly evaluate data migration trade-

offs. This leads to “best practices” such as always performing migration slowly and during non-peak

times. In addition, administrators are very conservative with migration decisions, favoring no action

unless there is a demonstrated need for a change. Unfortunately, without a disciplined approach to

evaluating the trade-offs, even the notion of a “demonstrated need” is subjective!

7.2 Valuing a migration plan

Looking back at the provisioning problem, the utility values of candidate configurations could be

directly compared because the hardware and workloads were assumed to be static, producing a con-

stant rate of utility. For data migration, however, the system is dynamic. Utility changes throughout

the operation, and two plans may take different amounts of time to reach their final configuration.

Additionally, the final configuration may be different for each of the plans. To compare such dis-

parate plans, it is necessary to consider the utility that each produce over time.

Following the approach of using business costs to evaluate storage configurations and taking

inspiration from economics, the expected stream of future utility can be discounted back to a Net

Present Value. This allows alternatives to be compared based on an equivalent present utility value.

CHAPTER 7. MIGRATION SOLVER 90

In effect, the predicted future utility from the migration and final configuration is viewed as a stream

of income that is discounted at some appropriate rate. This is analogous to how an investment choice

(e.g., choosing whether to invest in a company) might be weighed based on an analysis of discounted

cash flow.

Up to this point, utility has been described as a function of constant system metrics (e.g.,

U(BWWL, . . .)). While it is still assumed that the utility function remains constant, the metric values

on which it is based do change, causing the rate of utility to change with time. Instead of writing

this as U(BWWL (t)), we will continue to refer to utility functions with the old notation and the

understanding that the system metrics may change with time. The time-dependent stream of utility

that is produced will be written as U(t).

Typically, the present value of an income stream (e.g., for a discounted cash flow analysis) is

modeled as a series of payments at discrete times. The utility function, however, is modeled as a

continuous stream where the value of the utility function at any point in time is the instantaneous

rate at which utility is being acquired. This leads to a discounting of that rate in a manner similar to

continuously compounding interest, wherein the value is discounted by an exponential factor:

UPV (t) = U(t)e−rt

This (discounted) rate can then be integrated over the lifetime of the stream of utility to produce the

present value. This present value is a value for utility (the expected accumulation over the system’s

lifetime), not a rate. Assuming a data migration begins at t = 0 and the system will continue to run

for the foreseeable future, the calculation is:

UPV =
Z ∞

0
UPV (t)dt

=
Z ∞

0
U(t)e−rtdt

It is important to note that the integral extends to infinity, meaning that the ending configuration of

the migration is also included in this calculation. The actual migration operation begins at t = 0

and continues for Tm seconds. For times t > Tm, the system is in the final configuration, and the

value of the utility function is assumed to be constant, having the value associated with this final

CHAPTER 7. MIGRATION SOLVER 91

configuration.1

The discount rate, r, adjusts the weight placed on short-term utility versus long-term benefit

from a migration. Higher values of r lead to a faster decay, more heavily discounting future utility

and increasing the relative importance of short-term utility. An interesting area for future work is

exploring how to accurately determine this discount rate. The approach used here is to view this

discount factor as accounting for the risk that the storage system (or workloads) will change, invali-

dating the prediction of utility. This interpretation is consistent with the formula above, assuming an

exponential distribution in the frequency of system changes. That is, the probability that the system

will not have changed between t = 0 and t = T would be e−rT , and the mean time between changes

would be 1/r. This implies that for a storage system that we expect to change, on average, once per

week,

1

r
=1 wk

(

7 day

wk

)(

24 hr

day

)(

3600 s

hr

)

r =1.65x10−6 s−1

This discount rate could be considered a lower bound on the actual discount rate, because it only

accounts for the risk of change to the system. Typically, interest rates incorporate both a component

for the risk and an additional amount, known as the risk-free rate, which can be viewed as the

extra reward for the delay in receiving income. Because of the difference in magnitude between

the risk and risk-free rates (the risk-free rate is typically only several percent per year), the risk-

free component will not be considered further, and the discount rate will only use the mean time to

change as shown above.

One might be temped to consider an alternate approach for calculating the present value by using

a more “typical” discount rate (e.g., 10% annually) and limiting the upper bound of the integral to

constrain the impact of the uncertain future. Returning to the example of expecting the storage

system to change once per week (on average), it may be tempting to change the present value

integral to be:
R 1wk
0 U(t)e−rtdt, with the discount rate as r = 10% yr−1 = 3.17x10−9 s−1. There

are two problems associated with this line of reasoning. First, by limiting the upper bound of

the integral, the calculation disregards utility beyond this threshold (1 wk) into the future. This

might be plausible if the storage system were to change exactly once per week, but the intent is to

1In the case where there is no migration (i.e., U(t) is a constant) this calculation produces the same ordering of

configurations as directly comparing the (constant) utility values. Thus, the discounting used for migration is consistent

with the direct comparisons that were used for provisioning. See Section 7.2.1 for the specific formula.

CHAPTER 7. MIGRATION SOLVER 92

model a probabilistic change (e.g., an average of once per week), leading to erroneous results with

this approach. Further, in situations where a reconfiguration requires longer than this threshold to

complete, the end configuration would not be incorporated into the results. This oversight could lead

to short-term gains that produce poor configurations farther in the future. Second, the motivation

to use “typical” discount rates comes from the desire to draw a parallel between the values seen in

financial markets and those that should be applied to a storage system. Equating these two rates

amounts to equating the risk as well. Using the same discount rate for valuing a company and a

storage migration plan implies that the risk of bankruptcy for the company is equivalent to the risk

of the storage system (or its workloads) changing. These two likelihoods are typically not of the

same magnitude.

7.2.1 Comparison against the current configuration

Using the above method, different migration alternatives can be compared, regardless of how much

data they move or what their ending configuration is. This method presents a way to identify attrac-

tive plans for reconfiguration, but it still leaves an open question of whether a given plan is worth

implementing or the current configuration should be retained. In fact, the same methodology used

for valuing a migration plan can be used to assign a value for retaining the current configuration (i.e.,

doing nothing). The insight is that keeping the configuration static is, in effect, a data migration that

does not consume any time with an ending configuration that is the same as the initial configuration.

Using this insight, the present value of keeping the current configuration is just:

UPV =
Z ∞

0
U(t)e−rtdt

=
Z ∞

0
Ucurrent e

−rtdt

=Ucurrent

Z ∞

0
e−rtdt

=
Ucurrent

r

7.3 Modeling migration

Migration within the Ursa Minor architecture proceeds in two phases. First, the metadata service

installs back-pointers at the new data location. These back-pointers contain metadata information

sufficient to redirect clients, allowing them to read the data from its old (current) location. In the

CHAPTER 7. MIGRATION SOLVER 93

second phase, all clients are redirected to the new data location, and a “migration coordinator” is

started. By immediately redirecting the foreground workloads, writes will help move data into the

new location, while reads will require an additional round trip to storage nodes (to follow the back-

pointers) if the requested block has not yet been moved. The migration coordinator is the main data

mover for migrations. It resembles an additional client and workload in the system, reading data

from the old location and writing it to the new. The principal method for controlling the speed of

data migration is by varying the rate at which the coordinator reads and writes data blocks.

The installation of the back-pointers by the metadata service was not modeled, because the

operation is not in the critical path of servicing I/O requests. The migration coordinator was modeled

as an additional client with one workload that accessed the dataset being moved. The choice to

create a new client was somewhat arbitrary as the migration could also be performed by one of

the existing clients. Modeling the datasets and workloads during migration required changes to the

models that were presented in Chapter 3.

Availability and reliability The use of back-pointers for data migration has the disadvantage that

both of the data distributions are critical to serve the dataset. Once a client makes its first write to

the new location, the old data distribution no longer contains an up-to-date copy. Likewise, until all

data has been copied, the old distribution is needed to fill the gaps that still contain back-pointers.

This reliance on both data distributions has implications for both the availability and reliability of

the dataset.

Both the (binomial) availability model and the reliability model treat the two data distributions

as independent. The availability of the dataset is calculated as:

AVDS = AVDDold
·AVDDnew

The reliability is calculated by summing the annual failure rates of the distributions:

AFRDS = AFRDDold
+AFRDDnew

Capacity During the data migration, both data distributions contain data and occupy space on the

storage nodes. The capacity calculations (consumption, utilization, and blowup) are based on the

full capacity being consumed by both distributions. This corresponds closely to the Ursa Minor

prototype, where back-pointers are stored for each data block. Potential enhancements to Ursa

CHAPTER 7. MIGRATION SOLVER 94

Minor include only consuming storage in the new data distribution when it is written and freeing

storage in the old distribution once a data block has been copied (or overwritten) in the new location.

Performance The performance models are affected in two main areas, where the I/O requests

are directed and how demands are calculated at storage nodes. To reuse the terminology from the

description of the performance model, it affects the calculation of both the visit ratio and the service

time. First, at different stages of the migration, there will be different load placed on each of the

data distributions. When the migration begins, all I/O requests are sent to the new data distribution,

and all reads will additionally be sent to the old distribution (because they are redirected by a back-

pointer). As the migration progresses, more data will be stored in the new distribution, reducing the

fraction of reads that are redirected. At the end of the migration, none of the reads will be sent to

the old distribution because all of the back-pointers will have been replaced by data. To simplify

the calculations, the model assumes that all I/O operations are spread uniformly across the address

space of the data object. Using this assumption, if the visit ratio for the workload based on the

individual data distributions are Vread and Vwrite, the old distribution’s visit ratios become:

V ′
read =(1− c)Vread

V ′
write =0

where c is the fraction of the dataset that has been migrated. All writes are directed solely to the

new data distribution. The new data distribution’s visit ratios are calculated normally.

The visit ratio for the workload of the migration coordinator is calculated normally, except read

operations are directed to the old location, writes to the new, and the workload itself is modeled as

a sequential access pattern, regardless of the foreground workloads.

The service time calculation is altered slightly. As described previously, the disk service time is

affected by the number of workloads that access the disk. The reason for this parameter is to account

for interference between workloads that would decrease the effective sequentiality. In keeping with

this reasoning, the accesses directed at the old and new data distributions are counted as separate

“workloads” in this formula even though they originate from a single foreground workload. The

rationale for this treatment is that accessing different data distributions that share the same disk

would incur a seek.

CHAPTER 7. MIGRATION SOLVER 95

Power Since both data distributions are active during the data migration, all storage nodes for

both distributions are assumed to be contributing to the power consumption of the storage system.

Given the above adjustments to the models, the remaining task is to model the actual progress

of the data migration. The models and utility function are designed to assess static snapshots of

the system configuration. This leads to an approach of quantizing the data migration into a series

of steps and calculating the metrics and utility once for each step as the migration proceeds. The

migration process could be quantized by either time (e.g., every 30 s) or by the fraction of data that

has been migrated (e.g., every 1%). For simplicity, the latter was chosen. This provides a known

value for c in the calculations above. Each of these migration quantum last for a varying amount of

time, based on the rate of data migration. For example, it is known that for a dataset of B blocks,

each quantum of size q (a fraction between 0 and 1) will require qB blocks to be migrated from the

old data distribution to the new. This required number of blocks is moved by the combination of the

migration coordinator and the writes of the foreground workload.

The migration coordinator reads from the old distribution and writes to the new, performing two

I/O operations for each block moved. Assuming it does not re-copy any blocks that have already

been written by the foreground, it contributes a consistent rate of IOPSCOORD/2 to the migration of

the dataset currently being moved. 2 The foreground writes, on the other hand, contribute a varying

amount based on the current fraction complete. Again, assuming that the foreground writes are

spread uniformly, the total migration rate is (in blocks per second):

BPS(c) =
IOPSCOORD

2
+(1− c) ·FracWrite · IOPSFG

Using this formula, the duration of the quantum can be calculated as:

Qd (c) =
q ·B

BPS(c)

2The coordinator can periodically request a list of blocks still containing back-pointers, reducing the number of re-

copied blocks to an insignificant fraction.

CHAPTER 7. MIGRATION SOLVER 96

The NPV of the stream of utility can then be calculated as a sum of the discounted quanta plus

the discounted value of the end configuration:

UPV =
1/q−1

∑
i=0

Qd (iq) ·U(iq) · e−rTs(iq) +
Z ∞

Ts(1)
Ufinal e

−rtdt

Ts (c) =
c/q−1

∑
i=0

Qd (iq)

Ts (c) is the time, in seconds, of the beginning of the quantum that models the migration step be-

tween the fractions c and c+q complete.

7.4 Searching for good plans

There has been significant work on developing data migration plans. For example, Anderson et al.

[2001a] compare several algorithms that move fixed-size data chunks, accounting for space con-

straints and attempting to complete the migration in as few steps as possible. A given storage device

was only permitted to move one data chunk (either to send or receive) in each step. They chose the

migration duration (in number of steps) as the main comparison criterion for the algorithms.

Given that others have developed methods to handle space constraints, that work will not be

duplicated here. Those results could be used to augment the ordering of dataset migration or to

create intermediate steps that would account for capacity limitations. The main goal of this portion

of the dissertation is to value migration plans (and the resulting configuration) based on guidance

from a utility function. The main parameters available for optimization are the ending configuration,

the ordering of dataset movement, and the speed with which data is moved. The optimization system

moves a single dataset at a time, and the speed is controlled by adjusting the multiprogramming level

(number of outstanding requests) of the migration coordinator’s workload.

Migration rate for a single dataset As an initial step toward creating a migration plan between

two arbitrary configurations, this section only considers optimizing the migration speed between

two fixed configurations that differ by exactly one data distribution. In this scenario, the single

dataset to move is given. The challenge is to determine, for each migration quantum, the proper

speed of the migration coordinator.

CHAPTER 7. MIGRATION SOLVER 97

If the speed of the migration is also quantized (e.g., the multiprogramming level of the coor-

dinator can have values between one and ten, or a total of M = 10 values), this implies a total of

M1/q possible migration schedules. The insight to solving this problem more efficiently is to note

that the configuration for a particular quantum (i.e., the fraction of I/O requests directed to a partic-

ular data distribution) is determined by the fraction complete, c. It is not affected by the choice of

migration speed, M, during other quanta. Earlier quanta serve only to influence the time at which

later ones begin, thus influencing how much they are discounted. Here, the exponential discounting

is useful because it allows a plan to be shifted arbitrarily, by multiplying the discounted value by an

appropriate factor. Delaying the start of a utility stream, U(t) by t0 seconds:

U′
PV =

Z ∞

t0

U(t− t0)e
−rtdt

=
Z ∞

0
U(s)e−r(s+t0)ds

=e−rt0

Z ∞

0
U(s)e−rsds

=e−rt0UPV

Since shifting the starting time is equivalent to multiplication by a constant factor, the optimal choice

of migration speed for one quantum is not affected by an earlier quanta, because all possible choices

are multiplied by that same non-negative factor.

While the optimal choice for one quantum is not affected by previous intervals, it is affected

by subsequent ones. The choice of coordinator speed trades off the length of the current quantum

(and the delay until the next one begins) against the utility value during the current quantum. The

dependence on the future quanta but not on the past leads to an approach of calculating migration

plans “in reverse.” Starting with the final configuration (a 100% complete migration), the present

value can be calculated as:

UPV,1 =
Z ∞

0
Ufinal e

−rtdt

=Ufinal

Z ∞

0
e−rtdt

=
Ufinal

r

CHAPTER 7. MIGRATION SOLVER 98

The optimization is then defined recursively as:

UPV,c = max
m:1...M

(

Qd (c,m) ·U(c,m)+ e−rQd(c,m)UPV,c+q

)

This expression chooses the alternative with the highest present value based on a migration that

begins at c percent complete. The first term is the duration of this quantum based on a particular

multiprogramming level multiplied by the utility value for the quantum. The final term adds the

(discounted) utility for the subsequent portions of the migration, shifting them by the duration of

the current quantum. The output of this process is a present value for the data migration (UPV =

UPV,0) and a list of multiprogramming values for each migration quantum. This process reduces

the solution complexity to M/q or the number of multiprogramming levels times the number of

migration quanta.

Migration of multiple datasets Building on the technique described above for migrating a single

dataset, it is possible to use utility as a guide for controlling the migration of multiple datasets.

For D datasets, there are D! possible migration orderings, assuming a single dataset is moved at a

time. The chosen approach is to proceed in a forward direction, migrating one dataset at a time, in

a greedy fashion. Starting with the initial configuration, each of the possible datasets are evaluated,

assuming that it is the only dataset that will be moved. This mimics a situation where exactly

one dataset is moved and the migration process halted, leaving the system in that configuration.

The single dataset migration that leads to the highest net present value is chosen as the first one

to move. This new configuration then becomes the starting point for choosing the next dataset to

move. This process is repeated until all datasets have been ordered. This requires (D+1)D/2 plans

to be calculated, making the complexity O
(

D2
)

instead of factorial. Unfortunately, this process of

choosing an ordering is not guaranteed to produce an optimal plan. However, it chooses the largest

gains first, capitalizing on benefits earlier rather than later. Additionally, if the administrator decides

to halt a data migration while it is in progress, by biasing toward early gains, the system may have

capitalized on the majority of the improvement.

Comparing alternative final configurations The procedures described above provide a method

to generate a multi-dataset migration plan given a starting and ending configuration. Although their

calculations account for the long-term utility of the final configuration, they do not provide a method

CHAPTER 7. MIGRATION SOLVER 99

to generate one. Instead, they rely on the provisioning solver from previous chapters (constrained

to use the existing hardware) to create suitable final configurations.

Allowing all datasets to be moved will produce the final configuration with the highest possible

utility value, but every additional dataset that is moved increases the cost of the migration. Ideally,

the search for a final configuration could be combined with the ordering and speed optimization. As

a compromise, several attempts can be made to generate a good migration plan. By selecting only

a subset of the datasets to move, the cost of migration can be decreased, and this choice of datasets

could be influenced by recent storage events. For example, if a device fails, a good starting point

would be to move only the datasets that had data fragments on that device. This selection could then

be augmented with some number of (randomly chosen) additional datasets.

While storage systems are likely to be built using heterogeneous storage nodes, there will likely

be only a few different types in a given system. Having large numbers of identical devices lead to

having a number of equivalent system configurations. For example, in a system composed of two

identical storage nodes and two datasets, if both datasets use a 1-of-1 declustered across 1 encoding,

there are only two unique configurations (either they share a storage node or not). However, there are

four total configurations. For initial provisioning, the existence of equivalent configurations matter

very little because equivalent configurations produce identical utility. When planning migration,

the final utility will be the same between these equivalent configurations, but the cost to migrate

the data may differ. Because the current procedure for evaluating migration divides the choice of

ending configuration and dataset ordering into separate steps, the cost of migration is not known to

the solver that generates the final configuration. Returning to the example of 2 storage nodes and

two datasets, if both datasets are initially stored on node one, and the final configuration is to have

them utilize different nodes, depending on which of the equivalent final configurations are chosen,

a different migration plan will be created (i.e., the choice of which dataset to move is determined

by which of the equivalent configurations is chosen). One approach to handling this problem could

be to include a re-organization step prior to calculating the migration plan. This step could swap

storage nodes of the same type in an attempt to minimize the cost of migration. Approximations of

this cost include the number of datasets or amount of data to move.

7.5 Migration summary

This chapter has described how utility can be used to guide the creation of plans for the online

migration of data. It uses the Net Present Value of predicted utility to compare different migration

CHAPTER 7. MIGRATION SOLVER 100

plans. This method allows plans that take varying amounts of time and result in different ending

configurations to be compared, and it contains a configurable discount rate to adjust the weight

placed on short-term versus long-term utility.

A method of generating migration plans with high utility is also presented. It relies on a series of

nested optimizations that include the provisioning solver, a dataset ordering heuristic, and a method

for determining the optimal migration speed for each dataset.

Using the techniques described here, different migration choices can be generated and com-

pared. Additionally, by comparing them to doing nothing, it can be determined whether any of the

optimization plans should be implemented.

Chapter 8

Automatic adaptation

The previous chapter described how utility can be used to evaluate data migration and re-encoding

trade-offs. Those methods will be applied to several scenarios, showing how they can be used to

guide automatic adaptation of the storage system. As a baseline, a discount rate of 1.65x10−6 s−1

will be used, corresponding to an expected once per week change in workloads or system compo-

nents. The system will be permitted to optimize the number of outstanding requests made by the

migration coordinator, but the value will be limited to between one and ten simultaneous requests

to limit the computation requirements.

8.1 Effect of discount rate

The choice of discount rate affects how short-term utility is balanced with long-term utility. For

example, with a large discount rate, migration choices will favor scenarios that increase current

utility, potentially slowing migration operations. To illustrate this trade-off, several scenarios are

compared, with each differing only in the discount rate that is applied. All scenarios will use the

same workload and storage system configuration as well as the same utility function. The system

will be similar to that of the 0.01¢ scenario in Section 6.1. There will be only a single dataset and

corresponding workload, and there will be only seven storage nodes. The dataset begins in a 1-of-1

encoding on the first storage node and is re-encoded into the optimal, a 1-of-3 declustered across

7 encoding across all seven storage nodes. Figure 8.1 shows the utility throughout the migration

process for four different discount rates, using 1% of the migration as the quanta size. Higher

discount rates tend to slow the migration process because they place more weight on the current

101

CHAPTER 8. AUTOMATIC ADAPTATION 102

-2e+06

0

2e+06

4e+06

U
ti
lit

y

2.78x10
-4

s (1 hr)

4.63x10
-5

s (6 hr)

1.65x10
-6

s (1 wk)

3.16x10
-8

s (1 yr)

0 5000 10000 15000 20000 25000
Time (s)

0

2

4

6

8

M
P

 l
e
v
e
l

2.78x10
-4

s (1 hr)

4.63x10
-5

s (6 hr)

1.65x10
-6

s (1 wk)

3.16x10
-8

s (1 yr)

Figure 8.1: Migration using four different discount rates – This graph shows

the predicted utility during migration using different discount rates to calculate the

plan. Each of the discount rates are represented by the amount of time required

to decay the value by 50% (i.e., 1 week corresponds to r = 1.65x10−6). As the

rate is lowered (a longer decay time), migrations tend to proceed quicker because

the long-term utility is valued more. Once the time to decay by 50% significantly

exceeds the duration of the data migration, it has little effect on the plan (e.g.,

1 week and 1 yr have nearly identical plans). The large step upward at the end of

the migration is largely a result of the increased availability and reliability since

the old data distribution is no longer necessary for data access. The second graph

shows the multiprogramming level of the coordinator during the migration. The

higher this level, the more aggressively data is being moved.

utility. However, once the time period to decay by 50% (determined by the inverse of the discount

rate) significantly exceeds the duration of the migration, it has little effect on the migration plan.

Also visible in this figure is the multiprogramming level of the coordinator. This value indicates

the level of concurrency, or aggressiveness, of the migration coordinator. As the migration proceeds,

this value tends to increase for several reasons. First, as the migration proceeds, the final configu-

CHAPTER 8. AUTOMATIC ADAPTATION 103

ration (with its associated high utility) becomes discounted less, on a relative basis. This makes the

optimization system more willing to sacrifice current utility. Second, as the migration progresses,

the foreground contributes less to the movement of data, lengthening the time required to move a

fixed amount of data at a given MP level, again changing the balance of time to completion versus

current utility.

Beyond just affecting the rate of migration, the discount rate can determine whether a migration

should be conducted at all. For example, consider the same scenario as above but beginning with

a 1-of-3 declustered across 6 encoding. The initial utility is $3.09 M/yr, which is only 0.5% lower

than the optimal configuration. For a low discount rate (e.g., the time to decay by 50% is one year),

the migration cost can be offset by the small improvement provided by the new, final configuration.

With higher discount rates (e.g., a decay time of one week), the end configuration is not sufficiently

better to justify the migration cost.

8.2 Incremental provisioning

Once a storage system is provisioned and deployed, it is common for an organization to add ad-

ditional datasets as the need arises. The system administrator is presented with a request to store

one or more additional datasets, and he needs to add them to the existing storage infrastructure.

When adding additional datasets to a system that is already in-service, the administrator is typically

left with the dilemma of deciding whether to simply add the new datasets, fitting them around the

existing ones or to migrate the existing data to hopefully obtain a more optimal final configuration.

Utility allows the administrator to take a structured approach to this decision.

To illustrate the use of utility to guide this incremental provisioning task, this section will work

through an example scenario. The initial configuration is identical to that of Section 6.1. Using the

0.01¢ per I/O utility function, it was shown that the two datasets should use a 1-of-3 declustered

across 7 data encoding, where each of the two datasets reside on their own set of seven storage

nodes. In this scenario, the administrator is presented with two additional datasets and workloads

to be added to this storage system. For simplicity, these new dataset and workload specifications

are identical to the original. The administrator must now decide how to arrange the four datasets on

the storage system, given the restriction that there is a cost associated with moving the two existing

ones.

It can be determined that the best placement for the new datasets without moving the existing

ones is to use a 1-of-2 declustered across 3 encoding for the new datasets, with both interfering with

CHAPTER 8. AUTOMATIC ADAPTATION 104

a single one of the original datasets. For example, if the original datasets used nodes 1–7 and 8–14,

respectively, the new datasets could use 1–3 and 4–6, respectively. If the administrator chooses to

move the existing datasets, the provisioning solver suggests that each use a 1-of-2 declustered across

3 encoding, with each dataset on its own set of disks. This leaves two storage nodes empty (i.e., it

only uses 4 ·3= 12 of the existing 14).1 The configuration produced by moving the existing datasets

has a higher utility ($11.9 M/yr) than when the existing datasets remain in place ($9.8 M/yr).2 The

dilemma for the administrator is whether this benefit is worth the cost of migrating data.

Assuming that the new datasets must be deployed immediately (before any reconfiguration), the

initial deployment will use the distribution discussed above (with the two new datasets using 1/2/3

and interfering with a single existing workload). The analysis then compares the present value of

keeping this configuration against the present value of migrating the data such that they all use a

1-of-2 declustered across 3 encoding. If the initial configuration is kept, the discounted value is:

UPV =
U

r

=
$9.8x106 yr−1

1.65x10−6 s−1

(

yr

365.25 day

)(

day

24 hr

)(

hr

3600 s

)

=$1.89x105

After calculating the migration plan for the original two datasets (the two new datasets do not

need to be moved), the discounted value is $3.29x105, which is greater than keeping the initial

configuration, indicating that the migration should be performed.3

These same techniques that are used to decide if the existing data should be moved could be

used to evaluate whether the new datasets should be deployed before or after the migration of the

existing ones. This analysis would need to incorporate a penalty in the utility function related to the

unavailability of the new data until migration is complete, but the methodology is the same.

Figure 8.2 shows the predicted utility and progression of the migration. The top graph shows

the expected utility over the course of the migration. Also shown in this graph are the utility values

for the initial and final configurations. These values can be seen as the small region to the left of

time zero and the plateau that begins at 41,300 s, respectively. The initial increase in utility as the

1Experiments with one dataset and four storage nodes confirm that 1/2/3 is preferred to */*/4 distributions.
2These utility values do not include the purchase cost of the storage nodes since the system has already been deployed.
3It is important to remember that the static analysis of a system configuration (e.g., $9.8M/yr) is only an instantaneous

rate and assumes no discounting. As such, it cannot be directly compared to the result of a present value calculation.

CHAPTER 8. AUTOMATIC ADAPTATION 105

migration begins, at t = 0, is the result of dataset 1 being served by a larger number of storage nodes

(those serving the old data distribution and those serving the new). These extra resources cause a

temporary increase in workload 1’s performance. The second graph shows the throughput of each

workload as the migration progresses. The third graph shows the rate at which blocks are being

migrated. This rate is a combination of the writes from the foreground workload to blocks that still

contain back-pointers and one half of the I/O rate of the coordinator. This graph slopes downward

because the foreground workload contributes less to data movement as the migration progresses

since fewer blocks are being written to the new data distribution for the first time. The fourth graph

shows the multiprogramming level (MPL) of the migration coordinator. This is analogous to the

maximum number of simultaneous requests that the coordinator may have outstanding. It is an

indication of the speed with which the coordinator is attempting to migrate data. When the speed

(multiprogramming level) of the coordinator increases, there is an associated increase in its I/Os per

second (the fifth graph) and the number of blocks per second that are migrated (the third graph). This

also negatively impacts the foreground workload because the coordinator is competing for resources

(second graph). As a result of the decrease in foreground performance, overall (instantaneous) utility

is also decreased (first graph).

Examining the behavior of the coordinator in the fourth graph, it can be seen that as each dataset

is migrated, the coordinator becomes more aggressive. The MPL during each step of the migration

is chosen to maximize the NPV of utility. Higher MPL will hurt current utility more but finish the

migration more quickly. With an MPL of one, the first quantum of the first dataset will complete in

132 s. With an MPL of ten, this time can be cut to 62 s. This 53% decrease in time is accompanied

by an approximately 20% decrease in utility as compared to an MPL of one. For the final quantum

of this dataset’s migration, this trade-off is considerably different. An MPL of one will complete

the final quantum in 566 s, while an MPL of ten requires only 90 s. It causes nearly the same 20%

decrease in utility, but it results in an 84% reduction in the migration time.

At both points in the migration process, the difference in IO/s of the coordinator between these

two settings (MPL of one versus ten) is approximately six times. The ten times increase in par-

allelism resulting in an only six times increase in throughput is a result of the added latency and

back-pressure on the closed-loop system. Comparing the overall IO/s of the coordinator for a given

MPL between the start and end of the migration shows only a 10% throughput decrease, mean-

ing that the ability for the coordinator to move data is largely independent of the fraction of the

migration that has been completed.

The large differences in the utility/speed trade-off can be explained by the contribution of the

CHAPTER 8. AUTOMATIC ADAPTATION 106

0

4e+06

8e+06

1.2e+07

U
ti
lit

y
Dataset 1 Dataset 2

0

500

1000

1500
IO

/s

Workload 1
Workload 2

Workload 3

Workload 4

0

500

1000

1500

B
lo

c
k
s
/s Total migration rate

Migration by coordinator

Migration by foreground

0

5

10

M
P

 l
e

v
e

l

Coordinator

0 10000 20000 30000 40000
Time (s)

0

1000

2000

3000

IO
/s

Coordinator

Figure 8.2: Migration plan for incremental provisioning – This set of graphs

shows the migration of the two existing datasets (datasets one and two) for the

incremental provisioning scenario. Dataset 1 is the first to be moved, followed

by dataset 2. These two migrations are separated by the dotted line that runs

through the graphs. The first graph shows utility as the migration proceeds. The

second graph shows the I/O rates for each of the four workloads running in the

system. The third graph shows the rate at which data is being migrated, in blocks

per second. This rate is the sum of the blocks moved by the coordinator and the

blocks moved by writes from the foreground workload. The downward slope to

this graph is caused by the diminishing contribution from the foreground work-

load as the migration progresses. The fourth graph indicates the speed at which

the coordinator is attempting to move data, given by its multiprogramming level

(i.e., the maximum outstanding requests). The final graph shows the actual I/O

rate of the coordinator. This I/O rate is evenly divided between reads of the old

data distribution and writes to the new data distribution, making its corresponding

contribution to the overall data migration (in blocks per second) one half of this

value.

CHAPTER 8. AUTOMATIC ADAPTATION 107

foreground workload. When the migration begins, all foreground writes plus all coordinator writes

(one half of its IO/s) migrate a block. At the end of the migration, the foreground contributes almost

nothing to the migration, relying completely on the coordinator. As the MPL is increased, it only

affects (to a first approximation) the contribution of the coordinator, making a larger percentage

difference when it is the only source of data migration. These two contributors to the data migration

rate can be seen in the third graph of Figure 8.2. This graph shows the total migration rate (in

blocks per second) and the individual contributions of the coordinator and foreground workload.

The migration rate from the coordinator is exactly half of its IO/s (shown in the fifth graph), while

the contribution of the foreground workload declines in direct proportion to the fraction of the

migration that is complete. This foreground contribution is (1− c) ·FracWrite · IOPSFG. Page 95

provides the complete formula for calculating the migration rate.

To estimate the effect of choosing an incorrect coordinator MPL, the total accumulated utility

during the migration (of both datasets, in this case) was compared against a migration in which

the worst MPL was chosen during each step. This “worst-case” plan accumulated 6% less utility

(non-discounted).

8.3 Repair

Many storage systems will suffer a hardware failure at some time during their service lifetime. This

experiment shows how utility can prioritize recovery after a storage node failure.

In this scenario, the same 14-node storage system with two datasets is used. The utility functions

and workloads are the same as the 0.01¢ scenario, described previously, except the utility function

values for dataset/workload one’s performance, availability, and reliability are doubled. This dou-

bling increases the importance of dataset and workload number one over that of the other, but it

attempts to maintain the relative importance of the different storage metrics within the workload by

keeping the same ratio between them. The initial configuration for the datasets are to use a 1-of-

3 declustered across 7 encoding on separate storage nodes. Beginning with this configuration, two

storage nodes are assumed to fail simultaneously, one affecting each of the datasets. This effectively

transforms the datasets into (approximately) 1-of-2 declustered across 6 data encodings.

Re-optimizing the configuration with the new, reduced number of storage nodes indicates that

the best encoding is for both datasets to use a 1-of-3 declustered across 6 encoding. Figure 8.3

compares the two possible orderings for the repair operation. As expected, repairing dataset one

before dataset two produces higher utility because it is “more important” than dataset two. This

CHAPTER 8. AUTOMATIC ADAPTATION 108

ordering, however, has only 0.1% higher utility because the actual migration is so short (less than

eight hours) relative to the discount rate which decays by half at one week. For migrating dataset

one, then dataset two, the migration takes 2.6x105 seconds, and the utility of the final configuration

is $9.28 M/yr. This means that the final configuration contributes $2.48x105 to the present value of

utility:

UPV,final =
Ufinal

r
e−rT

=
$9.28x106 yr−1

1.15x10−6 s−1
e−1.15x10−6·2.64x104

(

yr

365.25 day

)(

day

24 hr

)(

hr

3600 s

)

=$2.48x105

The overall utility of this configuration is $2.53x105. Therefore, the final configuration accounts for

98% of the present value of utility. While this result suggests that migrations of such short duration

are relatively insensitive to the dataset ordering, it is important to note that in the example presented

here, the datasets were segregated, making the individual migration steps insensitive to the ordering.

It is possible to construct scenarios where the ordering of migration influences not only the utility

but also the duration of migration because of contention for storage nodes.

8.4 Time to upgrade?

Over time, the demands placed on a storage system change. A previous example demonstrated

how utility can be used to handle incremental provisioning, helping an administrator decide how

to incorporate new datasets and workloads into an existing system. Another common problem for

system administrators is that existing workloads tend to change over time as user populations change

and applications become more or less popular. When these changes occur, the administrator must

decide how the storage system’s configuration should be modified to serve these new demands. He

must decide whether a simple re-organization of data will suffice or if it is time to upgrade the

system’s hardware.

This scenario demonstrates how utility can be used to aid the administrator in adjusting a storage

system to workload changes. Beginning with the configured storage system from Section 6.1 and the

0.01¢ utility function, it has been shown that the 1-of-3 declustered across 7 encoding is optimal for

the two datasets. However, if one of the workloads increases in intensity by doubling the number of

outstanding requests, decreasing its inter-request think time, and slightly increasing its sequentiality

CHAPTER 8. AUTOMATIC ADAPTATION 109

0

4e+06

8e+06

U
ti
lit

y

ds1, ds2

ds2, ds1

0 10000 20000
Time (s)

0

1000

2000

3000

4000

A
c
c
u

m
u

la
te

d
 u

ti
lit

y ds1, ds2

ds2, ds1

Figure 8.3: Comparison of two possible orderings for repair – Both orderings

use the same initial and final data distributions, and they take approximately the

same amount of time to complete. The utility difference between them is based

solely on the migration order. By migrating the higher value dataset first (dataset

one), the gain in utility is realized sooner. The bottom graph shows the “accumu-

lation” of utility as the migration proceeds (the integral of the top graph). This

bottom graph shows that once the higher value dataset is migrated, the system be-

gins accumulating utility at a higher rate, overtaking the other migration ordering.

Since the end configuration is identical for both orderings, the gap between the

two will remain constant once the migration is complete.

as well as its ratio of reads, how should the administrator respond?4 He has the option of doing

nothing, re-encoding one or both of the datasets, or he may even purchase additional storage nodes

to compensate for the additional load. The current configuration (with the more intense workload)

has a utility of $1.01x107/yr which produces a present value of $2.80x105. Optimizing the system

with the current hardware yields a configuration in which the dataset for the more intense workload

uses a 1-of-3 declustered across 8 encoding while the less accessed dataset is changed to a 1-of-3

declustered across 6 encoding. This optimization shifts a storage node to the more intense workload.

After accounting for the migration, this option has a present value of $2.82x105. When additional

hardware can be purchased, the solver produces a configuration that uses one additional storage

node, keeping the dataset from the unaltered workload in its original configuration while changing

4See the “rrw2” workload in Table A.3 for the full specification of this new workload.

CHAPTER 8. AUTOMATIC ADAPTATION 110

the more intense workload’s dataset to a 1-of-3 declustered across 8 encoding. This option also

produces a present value of $2.82x105.

Strictly interpreting the results, both of the new configurations are better than maintaining the

current. However, expressing objectives (i.e., creating utility functions) and creating system models

are subject to some amount of uncertainty. Based on this uncertainty, spending resources either to

upgrade the system or even to optimize the existing configuration may not have a discernible benefit.

Exploring the impact of uncertainty on these optimization decisions is an interesting area for future

research.

Chapter 9

Conclusions

This dissertation set out to demonstrate that “utility functions are a promising method for guiding

the design and optimization of a distributed, self-tuning storage system.” In support of that goal, this

document shows the importance of making trade-offs across storage metrics, and it explains how

utility can be used to guide those trade-offs, during both initial provisioning and online adaptation.

Further, it demonstrates prototype optimization systems that are guided by utility and shows how

they can be used to optimize several scenarios.

9.1 Contributions

This work provides evidence that automatic provisioning and tuning systems need to be able to

make trade-offs across storage system metrics. Since most configuration choices affect multiple

system metrics, this flexibility allows an automated system to produce superior solutions because it

can better balance costs and benefits.

Chapters 1–4 develop a framework for using utility to evaluate storage system configurations.

This tuning loop provides a plug-in architecture that allows more detailed models and additional

storage metrics to be added easily. The chapters also present the models that were used for analysis,

showing the robustness of the architecture by including both very simple models that were easy to

create as well as more detailed models such as the queueing-based performance model.

Chapters 5 and 6 show how utility can be used to guide storage provisioning. They develop

a solver that is able to create good storage solutions based on the guidance provided by utility

functions, showing that utility can be used successfully. The chapters also present several scenarios

111

CHAPTER 9. CONCLUSIONS 112

to highlight the importance of using utility for provisioning and the benefits that it has over more

traditional, automated approaches.

Chapters 7 and 8 build on the provisioning tool to show how utility can be used to guide the op-

timization of a storage system once it has been deployed. They present a methodology for creating

optimization plans and evaluating them against each other as well as comparing them to maintaining

the current configuration. This methodology provides a framework that allows a system to automat-

ically decide from among several competing plans and to determine whether any of them should be

acted upon. These chapters also present a method for creating optimization plans, controlling the

speed and order of data migration based on guidance provided by a utility function. This frame-

work was applied to several scenarios to show how it could be used for several common storage

optimization tasks.

9.2 Important future work

While this work shows the potential for utility-guided provisioning and optimization, it has high-

lighted several interesting areas of future work. One of the initial assumptions of this work is that

an administrator (or their agent) can provide a utility function for use by the system. While this

work presents an overview of how monetary costs and benefits can be used to create this function,

it is not a simple task. There are consequences that are difficult to quantify, such as user satisfaction

or impact on the organization’s reputation. The accuracy of the end solution depends, in part, on

the accuracy and completeness of the utility function. Pursuing techniques for creating good utility

functions is important. In addition to more detailed financial and actuarial analysis, research on

elicitation techniques [Boutilier et al., 2003; Braziunas and Boutilier, 2005; Chen and Pu, 2004;

Patrascu et al., 2005] also shows promise.

The construction of the solvers used in this work rely on having good storage models that can

analyze a potential configuration and produce accurate storage metrics. There is, typically, a tension

between the accuracy and speed of system models. Unfortunately, both are a priority. While some

work, such as that by Anderson [2001], has targeted both, more work is needed across many of the

storage metrics.

Another area for improvement in system modeling is the ability to characterize workloads.

Specifically, being able to tell when a workload has “changed” is very valuable. Changes to both

hardware and system objectives are relatively easy to notice because they are (usually) explicit

CHAPTER 9. CONCLUSIONS 113

events, and they tend to be stable. There does not appear to be an obvious indicator for workload

changes nor an easy way to quickly filter temporary fluctuations.

As automated approaches to system configuration and tuning become more common, it is im-

portant to create methods for layering these systems. For example, this work has concentrated on

configuring storage systems by making trade-offs across storage metrics. The administrator would

like to express objectives not as storage metrics but as application-level metrics. Additionally, mul-

tiple layers of applications could be involved in providing the end functionality to users, and it is

important to develop techniques that can permit trade-offs across these different levels.

Appendix A

Description of modeled components

The following tables list the attributes for each of the components (clients, storage nodes, and work-

loads) that were used in the evaluation. These attributes define the low-level characteristics of the

components and are used by the system models to predict the values of high-level storage system

metrics.

Table A.1: Clients used in experiments – This table lists the attributes of the

clients that were used in the evaluations and case studies. The client is based on

measurements from a 2.66 GHz Pentium 4.

Client

Name standard

CPU encoding time 0.2 ms

Network latency 125 µs

Network bandwidth 119 MB/s

114

APPENDIX A. DESCRIPTION OF MODELED COMPONENTS 115

Table A.2: Storage nodes used in experiments – This table lists the attributes of

the storage nodes that were used in the evaluations and case studies.

Storage nodes

Name 15k73 s500 s500c s500e

AFR 0.0062 0.015 0.015 0.015

Availability 0.98 0.95 0.95 0.95

Capacity 73.4 GB 500 GB 500 GB 500 GB

Disk bandwidth 100 MB/s 70 MB/s 70 MB/s 70 MB/s

Disk latency 5.75 ms 5.5 ms 5.5 ms 5.5 ms

Network bandwidth 119 MB/s 119 MB/s 119 MB/s 119 MB/s

Network latency 125 µs 125 µs 125 µs 125 µs

Power 50 W 50 W 50 W 50 W

Purchase cost $300 $5000 $2,000 $10,000

Table A.3: Workloads used in experiments – This table lists the attributes of

the workloads that were used in the evaluations and case studies. The “6450”

workload is an arbitrary 50/50 read/write mix. The “rrw” workloads are small,

random I/O such as from an OLTP-type workload. The “sread” workload is a

sequential read workload, as would be expected from I/O trace processing.

Workloads

Name 6450 rrw rrw2 sread

I/O size 64 kB 8 kB 8 kB 32 kB

Multiprogramming level 32 5 10 10

Random fraction 0.5 0.95 0.8 0.0

Read fraction 0.5 0.5 0.7 1.0

Think time 50 ms 1 ms 0.8 ms 1 ms

Bibliography

Numbers at the end of an entry refer to the pages on which that entry is cited.

Abd-El-Malek, M., Courtright II, W. V., Cranor, C., Ganger, G. R., Hendricks, J., Klosterman,

A. J., Mesnier, M., Prasad, M., Salmon, B., Sambasivan, R. R., Sinnamohideen, S., Strunk, J. D.,

Thereska, E., Wachs, M., and Wylie, J. J. (2005). Ursa Minor: Versatile cluster-based storage. In

Conference on File and Storage Technologies (FAST), pages 59–72. USENIX Association. 4, 5,

15, 19

Alvarez, G. A., Uysal, M., and Merchant, A. (2001a). Efficient verification of performability guar-

antees. In International Workshop on Performability Modeling of Computer and Communications

Systems (PMCCS), pages 95–99. 39

Alvarez, G. A., Wilkes, J., Borowsky, E., Go, S., Romer, T. H., Becker-Szendy, R., Golding, R.,

Merchant, A., Spasojevic, M., and Veitch, A. (2001b). Minerva: An automated resource provi-

sioning tool for large-scale storage systems. ACM Transactions on Computer Systems, 19(4):483–

518. 2, 13

Amiri, K. and Wilkes, J. (1996). Automatic design of storage systems to meet availability require-

ments. Technical Report HPL–SSP–96–17, Hewlett-Packard Laboratories. 42

Anderson, E. (2001). Simple table-based modeling of storage devices. Technical Report HPL–SSP–

2001–4, Hewlett-Packard Laboratories. 39, 112

Anderson, E., Hall, J., Hartline, J., Hobbs, M., Karlin, A. R., Saia, J., Swaminathan, R., and Wilkes,

J. (2001a). An experimental study of data migration algorithms. In International Workshop on

Algorithm Engineering (WAE), pages 145–158. Springer-Verlag. 96

Anderson, E., Hobbs, M., Keeton, K., Spence, S., Uysal, M., and Veitch, A. (2002). Hippodrome:

Running circles around storage administration. In Conference on File and Storage Technologies

(FAST), pages 175–188. USENIX Association. 2, 13

Anderson, E., Kallahalla, M., Keeton, K., Swaminathan, R., and Uysal, M. (2003). Application-

centric integrated storage management. In Algorithms and Architectures for Self-Managing Sys-

tems, pages 19–20. ACM Press. 2, 11

116

BIBLIOGRAPHY 117

Anderson, E., Kallahalla, M., Spence, S., Swaminathan, R., and Wang, Q. (2001b). Ergastulum:

Quickly finding near-optimal storage system designs. Technical Report HPL–SSP–2001–05,

Hewlett-Packard Laboratories. 13

Anderson, E., Spence, S., Swaminathan, R., Kallahalla, M., and Wang, Q. (2005). Quickly finding

near-optimal storage designs. ACM Transactions on Computer Systems, 23(4):337–374. 2, 13,

79

Anderson, T. E., Dahlin, M. D., Neefe, J. M., Patterson, D. A., Roselli, D. S., and Wang, R. Y.

(1996). Serverless network file systems. ACM Transactions on Computer Systems, 14(1):41–79.

15

Apthorpe, R. (2001). A probabilistic approach to estimating computer system reliability. In Systems

Administration Conference (LISA), pages 31–45. USENIX Association. 42

Asami, S. (2000). Reducing the cost of system administration of a disk storage system built from

commodity components. PhD thesis UCB/CSD–00–1100, EECS Department, University of Cal-

ifornia, Berkeley. 26

AuYoung, A., Grit, L., Wiener, J., and Wilkes, J. (2006). Service contracts and aggregate utility

functions. In International Symposium on High-Performance Distributed Computing (HPDC),

pages 119–131. IEEE. 14, 50

Bhagwan, R., Douglis, F., Hildrum, K., Kephart, J. O., and Walsh, W. E. (2005). Time-varying

management of data storage. In Workshop on Hot Topics in System Dependability (HotDep).

IEEE. 51

Borowsky, E., Golding, R., Merchant, A., Schreier, L., Shriver, E., Spasojevic, M., and Wilkes, J.

(1997). Using attribute-managed storage to achieve QoS. In International Workshop on Quality

of Service (IWQoS), pages 203–207. IFIP. 2, 11

Boutilier, C., Das, R., Kephart, J. O., Tesauro, G., and Walsh, W. E. (2003). Cooperative negotia-

tion in autonomic systems using incremental utility elicitation. In Conference on Uncertainty in

Artificial Intelligence (UAI), pages 89–97. Association for Uncertainty in Artificial Intelligence.

112

Braziunas, D. and Boutilier, C. (2005). Local utility elicitation in GAI models. In Conference on

Uncertainty in Artificial Intelligence (UAI). Association for Uncertainty in Artificial Intelligence.

112

Brindle, A. (1981). Genetic algorithms for function optimization. PhD thesis TR81–2, Department

of Computing Science, University of Alberta. 68

BIBLIOGRAPHY 118

Brown, A. and Patterson, D. A. (2000). Towards availability benchmarks: A case study of software

RAID systems. In USENIX Annual Technical Conference. USENIX Association. 26

Browning, E. K. and Zupan, M. A. (1996).Microeconomic Theory and Applications. HarperCollins,

fifth edition. 6

Burkhard, W. A. and Menon, J. (1993). Disk array storage system reliability. In Symposium on

Fault-Tolerant Computer Systems (FTCS), pages 432–441. IEEE. 42

Candea, G. and Fox, A. (2002). A utility-centered approach to building dependable infrastructure

services. In ACM SIGOPS European Workshop. ACM Press. 50

Chen, L. and Pu, P. (2004). Survey of preference elicitation methods. Technical Report IC/200467,

Swiss Federal Institute of Technology in Lausanne (EPFL). 59, 112

Chen, Y., Das, A., Gautam, N., Wang, Q., and Sivasubramaniam, A. (2004). Pricing and auto-

nomic control of web servers with time-varying request patterns. In International Conference on

Autonomic Computing (ICAC), pages 290–291. IEEE. 50

Chu, P. C. and Beasley, J. E. (1997). A genetic algorithm for the generalised assignment problem.

Computers & Operations Research, 24(1):17–23. 68

Contingency Planning Research (1996). The cost of downtime. http://www.

contingencyplanningresearch.com/codgraph.pdf. Accessed April, 2008. 10

Corcoran, A. L. and Hale, J. (1994). A genetic algorithm for fragment allocation in a distributed

database system. In Symposium on Applied Computing (SAC), pages 247–250. ACM Press. 66

Douceur, J. R. and Wattenhofer, R. P. (2001a). Large-scale simulation of replica placement algo-

rithms for a serverless distributed file system. In International Workshop on Modeling, Analy-

sis, and Simulation of Computer and Telecommunications Systems (MASCOTS), pages 311–319.

IEEE. 26

Douceur, J. R. and Wattenhofer, R. P. (2001b). Optimizing file availability in a secure serverless

distributed file system. In Symposium on Reliable Distributed Systems (SRDS). IEEE. 26

Eagle Rock Alliance, Ltd. (2001). Online survey results: 2001 cost of downtime. http://

contingencyplanningresearch.com/2001˜Survey.pdf. Accessed April, 2008. 10

Eisler, M., Corbett, P., Kazar, M., Nydick, D. S., and Wagner, J. C. (2007). Data ONTAP GX: A

scalable storage cluster. In Conference on File and Storage Technologies (FAST), pages 139–152.

USENIX Association. 15

http://www.contingencyplanningresearch.com/codgraph.pdf
http://www.contingencyplanningresearch.com/codgraph.pdf
http://contingencyplanningresearch.com/2001~Survey.pdf
http://contingencyplanningresearch.com/2001~Survey.pdf

BIBLIOGRAPHY 119

Energy Information Administration (2007). Average retail price of electricity to ultimate cus-

tomers by end-use sector, by state. http://www.eia.doe.gov/cneaf/electricity/epm/

table5_6_a.html. 53

Feitelson, D. G. and Naaman, M. (1999). Self-tuning systems. IEEE Software, 16(2):52–60. 66

Feltl, H. and Raidl, G. R. (2004). An improved hybrid genetic algorithm for the generalized as-

signment problem. In Symposium on Applied Computing (SAC), pages 990–995. ACM Press.

68

Frølund, S. and Koistinen, J. (1998). Quality of service specification in distributed object systems

design. In Conference on Object-Oriented Technologies and Systems (COOTS), pages 1–18.

USENIX Association. 11

Ganger, G. R., Strunk, J. D., and Klosterman, A. J. (2003). Self-* storage: Brick-based storage with

automated administration. Technical Report CMU–CS–03–178, Carnegie Mellon University. 15

Gaonkar, S., Keeton, K., Merchant, A., and Sanders, W. H. (2006). Designing dependable stor-

age solutions for shared application environments. In International Conference on Dependable

Systems and Networks (DSN), pages 371–382. IEEE Computer Society. 12, 14, 51

Gartner Consulting (2000). Total cost of storage ownership — a user-oriented approach. Research

note, Gartner Group, Inc. 10

Geist, R. and Trivedi, K. (1993). An analytic treatment of the reliability and performance of mirrored

disk subsystems. In Symposium on Fault-Tolerant Computer Systems (FTCS), pages 442–450.

IEEE. 39

Gelb, J. P. (1989). System-managed storage. IBM Systems Journal, 28(1):77–103. 2, 11

Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The Google file system. In Symposium on

Operating System Principles (SOSP), pages 29–43. ACM Press. 15

Ghosh, S., Hansen, J., and Rajkumar, R. (2003). Scalable resource allocation for multi-processor

QoS optimization. In International Conference on Distributed Computing Systems (ICDCS),

pages 174–183. IEEE. 50

Gibson, G. A. (1991). Redundant disk arrays: Reliable, parallel secondary storage. PhD thesis

UCB/CSD–91–613, EECS Department, University of California, Berkeley. 42

Gibson, G. A., Nagle, D. F., Amiri, K., Butler, J., Chang, F. W., Gobioff, H., Hardin, C., Riedel,

E., Rochberg, D., and Zelenka, J. (1998). A cost-effective, high-bandwidth storage architecture.

In Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages

92–103. ACM Press. 15

http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_a.html
http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_a.html

BIBLIOGRAPHY 120

Goodson, G. R., Wylie, J. J., Ganger, G. R., and Reiter, M. K. (2003). A protocol family for

versatile survivable storage infrastructures. Technical Report CMU–PDL–03–103, Parallel Data

Lab, Carnegie Mellon University. 17

Goodson, G. R., Wylie, J. J., Ganger, G. R., and Reiter, M. K. (2004). Efficient Byzantine-tolerant

erasure-coded storage. In International Conference on Dependable Systems and Networks (DSN),

pages 135–144. IEEE Computer Society. 16

Gray, J. (2003). A conversation with Jim Gray. ACM Queue, 1(4):8–17. 10

Gunther, N. and Harding, P. (2007). PDQ (pretty damn quick) version 4.2. http://www.

perfdynamics.com/Tools/PDQ.html. Accessed April, 2008. 32, 38

Gunther, N. J. (2005). Analyzing Computer System Performance with Perl::PDQ. Springer-Verlag.

32, 37

Howard, J. H., Kazar, M. L., Menees, S. G., Nichols, D. A., Satyanarayanan, M., Sidebotham, R. N.,

and West, M. J. (1988). Scale and performance in a distributed file system. ACM Transactions

on Computer Systems, 6(1):51–81. 15

Irwin, D. E., Grit, L. E., and Chase, J. S. (2004). Balancing risk and reward in a market-based

task service. In International Symposium on High-Performance Distributed Computing (HPDC),

pages 160–169. IEEE. 14, 50, 54

Karlsson, M., Karamanolis, C., and Zhu, X. (2004). Triage: Performance isolation and differentia-

tion for storage systems. In International Workshop on Quality of Service (IWQoS), pages 67–74.

IFIP. 88

Keeney, R. L. and Raiffa, H. (1993). Decisions with Multiple Objectives: Preferences and Value

Tradeoffs. Cambridge University Press. 6, 48

Keeton, K., Beyer, D., Brau, E., Merchant, A., Santos, C., and Zhang, A. (2006). On the road

to recovery: Restoring data after disasters. In European Systems Conference (EuroSys), pages

235–248. ACM Press. 12, 13, 14, 51

Keeton, K. and Merchant, A. (2004). A framework for evaluating storage system dependability.

In International Conference on Dependable Systems and Networks (DSN), pages 877–886. IEEE

Computer Society. 13

Keeton, K., Santos, C., Beyer, D., Chase, J., and Wilkes, J. (2004). Designing for disasters. In

Conference on File and Storage Technologies (FAST), pages 59–72. USENIX Association. 12,

13, 14, 51

Keeton, K. and Wilkes, J. (2002). Automating data dependability. In ACM SIGOPS European

Workshop, pages 93–100. ACM Press. 13, 51

http://www.perfdynamics.com/Tools/PDQ.html
http://www.perfdynamics.com/Tools/PDQ.html

BIBLIOGRAPHY 121

Kelly, T. (2003). Utility-directed allocation. In Algorithms and Architectures for Self-Managing

Systems, pages 47–52. ACM Press. 50

Kephart, J. O. and Das, R. (2007). Achieving self-management via utility functions. IEEE Internet

Computing, 11(1):40–48. 50

Kephart, J. O. and Walsh, W. E. (2004). An artificial intelligence perspective on autonomic com-

puting policies. In International Workshop on Policies for Distributed Systems and Networks

(POLICY), pages 3–12. IEEE. 2, 50

Lee, C., Lehoczky, J., Siewiorek, D., Rajkumar, R., and Hansen, J. (1999). A scalable solution

to the multi-resource QoS problem. In Real-Time Systems Symposium (RTSS), pages 315–326.

IEEE. 50

Lee, E. K. and Thekkath, C. A. (1996). Petal: Distributed virtual disks. In Architectural Support

for Programming Languages and Operating Systems (ASPLOS), pages 84–92. ACM Press. 15

Lee, J. Y. B. and Leung, R. W. T. (2002). Design and analysis of a fault-tolerant mechanism for

a server-less video-on-demand system. In International Conference on Parallel and Distributed

Systems (ICPADS), pages 489–494. IEEE Computer Society. 42

Litzkow, M., Livny, M., and Mutka, M. (1988). Condor - a hunter of idle workstations. In Interna-

tional Conference on Distributed Computing Systems (ICDCS), pages 104–111. IEEE. iii

Loaiza, J. (2000). Optimal storage configuration made easy. Whitepaper 295, Oracle Corporation.

12

Lu, C., Alvarez, G. A., and Wilkes, J. (2002). Aqueduct: Online data migration with performance

guarantees. In Conference on File and Storage Technologies (FAST), pages 219–230. USENIX

Association. 88

Mesnier, M. P., Wachs, M., Sambasivan, R. R., Zheng, A., and Ganger, G. R. (2007). Modeling the

relative fitness of storage. In Conference on Measurement and Modeling of Computer Systems

(SIGMETRICS), pages 37–48. ACM Press. 39

Meyer, J. F. (1980). On evaluating the performability of degradable computing. IEEE Transactions

on Computers, C-29(8):720–731. 39

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill. 65

Nagle, D., Serenyi, D., and Matthews, A. (2004). The Panasas ActiveScale Storage Cluster: De-

livering scalable high bandwidth storage. In ACM/IEEE Conference on Supercomputing (SC),

page 53. IEEE Computer Society. 64

BIBLIOGRAPHY 122

Nicola, V. F. and Goyal, A. (1990). Modeling of correlated failures and community error recovery

in multiversion software. IEEE Transactions on Software Engineering, 16(3):350–359. 25

Parekh, S., Gandhi, N., Hellerstein, J., Tilbury, D., Jayram, T. S., and Bigus, J. (2002). Using

control theory to achieve service level objectives in performance management. Real Time Systems

Journal, 23(1–2):127–141. 88

Pâris, J.-F., Schwarz, T. J. E., and Long, D. D. E. (2006). Evaluating the reliability of storage sys-

tems. Technical Report UH–CS–06–08, Department of Computer Science, University of Hous-

ton. 40

Patrascu, R., Boutilier, C., Das, R., Kephart, J. O., Tesauro, G., and Walsh, W. E. (2005). New ap-

proaches to optimization and utility elicitation in autonomic computing. In National Conference

on Artificial Intelligence (AAAI), pages 140–145. AAAI Press. 59, 112

Patterson, D. A. (2002). A simple way to estimate the cost of downtime. In Systems Administration

Conference (LISA), pages 185–188. USENIX Association. 55

Pinheiro, E., Weber, W.-D., and Barroso, L. A. (2007). Failure trends in a large disk drive popula-

tion. In Conference on File and Storage Technologies (FAST), pages 17–28. USENIX Associa-

tion. 25

Saito, Y., Frølund, S., Veitch, A., Merchant, A., and Spence, S. (2004). FAB: building distributed

enterprise disk arrays from commodity components. In Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 48–58. ACM Press. 15

Savage, S. and Wilkes, J. (1996). Afraid—a frequently redundant array of independent disks. In

Winter USENIX Technical Conference, pages 27–39. USENIX Association. 26

Schroeder, B. and Gibson, G. A. (2007). Disk failures in the real world: What does an MTTF of

1,000,000 hours mean to you? In Conference on File and Storage Technologies (FAST), pages

1–16. USENIX Association. 25

Shriver, E. (1999). A formalization of the attribute mapping problem. Technical Report HPL–1999–

127, Hewlett-Packard Laboratories. 11

Siewiorek, D. P. and Swarz, R. S. (1982). The Theory and Practice of Reliable System Design.

Digital Press. 22

Soules, C. A. N., Goodson, G. R., Strunk, J. D., and Ganger, G. R. (2003). Metadata efficiency in

versioning file systems. In Conference on File and Storage Technologies (FAST), pages 43–58.

USENIX Association. 18

BIBLIOGRAPHY 123

St.Pierre, E. (2007). ILM: Tiered services & the need for classification. Technical tutorial, Stor-

age Networking Industry Association. http://www.snia.org/education/tutorials/2007/

spring/data-management/ILM-Tiered_Services.pdf. 12

Strunk, C. W. (2003). Measurement of Linear Nanometric Distances Using Scattered Evanescent

Radiation. PhD thesis, Department of Chemical Engineering, Carnegie Mellon University. ii

Strunk, J. D., Goodson, G. R., Scheinholtz, M. L., Soules, C. A. N., and Ganger, G. R. (2000).

Self-Securing Storage: Protecting data in compromised systems. In Symposium on Operating

Systems Design and Implementation (OSDI), pages 165–180. USENIX Association. 18

Telford, R., Horman, R., Lightstone, S., Markov, N., O’Connell, S., and Lohman, G. (2003). Us-

ability and design considerations for an autonomic relational database management system. IBM

Systems Journal, 42(4):568–581. 2

Tesauro, G. (2005). Online resource allocation using decompositional reinforcement learning. Tech-

nical Report RC23690, IBM Research. 50

Thereska, E., Abd-El-Malek, M., Wylie, J. J., Narayanan, D., and Ganger, G. R. (2006). Informed

data distribution selection in a self-predicting storage system. In International Conference on

Autonomic Computing (ICAC), pages 187–198. IEEE. 32

Uttamchandani, S., Voruganti, K., Srinivasan, S., Palmer, J., and Pease, D. (2004). Polus: Growing

storage QoS management beyond a “four-year old kid”. In Conference on File and Storage

Technologies (FAST), pages 31–44. USENIX Association. 13

Uttamchandani, S., Yin, L., Alvarez, G. A., Palmer, J., and Agha, G. (2005). CHAMELEON: A

self-evolving, fully-adaptive resource arbitrator for storage systems. InUSENIX Annual Technical

Conference, pages 75–88. USENIX Association. 88

Uysal, M., Alvarez, G. A., and Merchant, A. (2001). A modular, analytical throughput model

for modern disk arrays. In International Workshop on Modeling, Analysis, and Simulation of

Computer and Telecommunications Systems (MASCOTS), pages 183–192. 39

Varki, E., Merchant, A., Xu, J., and Qiu, X. (2004). Issues and challenges in the performance

analysis of real disk arrays. IEEE Transactions on Parallel and Distributed Systems, 15(6):559–

574. 39

Walsh, W. E., Tesauro, G., Kephart, J. O., and Das, R. (2004). Utility functions in autonomic

systems. In International Conference on Autonomic Computing (ICAC), pages 70–77. IEEE. 50

Ward, J., O’Sullivan, M., Shahoumian, T., and Wilkes, J. (2002). Appia: automatic storage area

network fabric design. In Conference on File and Storage Technologies (FAST), pages 203–217.

USENIX Association. 29

http://www.snia.org/education/tutorials/2007/spring/data-management/ILM-Tiered_Services.pdf
http://www.snia.org/education/tutorials/2007/spring/data-management/ILM-Tiered_Services.pdf

BIBLIOGRAPHY 124

Weddle, C., Oldham, M., Qian, J., Wang, A.-I. A., Reiher, P., and Kuenning, G. (2007). PARAID:

A gear-shifting power-aware RAID. ACM Transactions on Storage, 3(3):13. 28

Weikum, G., Zabback, P., and Scheuermann, P. (1990). Dynamic file allocation in disk arrays.

Technical Report 147, Department of Computer Science, ETH Zurich. 12

Wilkes, J. (2001). Traveling to Rome: QoS specifications for automated storage system manage-

ment. In International Workshop on Quality of Service (IWQoS), pages 75–91. IFIP. 2, 11

Wilkes, J., Golding, R., Staelin, C., and Sullivan, T. (1996). The HP AutoRAID hierarchical storage

system. ACM Transactions on Computer Systems, 14(1):108–136. 12

Wolf, J. (1989). The Placement Optimization Program: A practical solution to the disk file assign-

ment problem. Performance Evaluation Review, 17(1):1–9. 12

Wong, T. M., Golding, R. A., Glider, J. S., Borowsky, E., Becker-Szendy, R. A., Fleiner, C.,

Kenchammana-Hosekote, D. R., and Zaki, O. A. (2005). Kybos: Self-management for distributed

brick-based storage. Research Report RJ 10356, IBM Almaden Research Center. 15

Zhu, Q., Chen, Z., Tan, L., Zhou, Y., Keeton, K., and Wilkes, J. (2005). Hibernator: Helping disk

arrays sleep through the winter. In Symposium on Operating System Principles (SOSP), pages

177–190. ACM Press. 28

	Title
	Abstract
	Acknowledgements
	Introduction
	Thesis statement
	Distributed storage system
	Guiding design and optimization
	Expressing objectives via utility

	Tool overview
	Overview of rest of document

	Background
	General related work
	Specifying objectives
	Previous tools and approaches

	Storage architecture
	Ursa Minor architecture
	Modeling Ursa Minor

	Storage system models
	Availability
	Detailed model
	Binomial model
	Improvements and related models

	Capacity
	Cost and power
	Improvements and related models

	Management complexity
	Improvements and related models

	Performance
	Queueing model
	Improvements and related models

	Reliability
	Markov model
	Improvements and related models

	Other models
	Physical space
	Robustness
	Similarity

	Summary of models
	Model performance

	Utility
	Overview of utility
	Utility in computer systems
	Cost-based utility
	Examples

	Priority-based utility
	Utility with constraints
	Utility elicitation

	Provisioning solver
	Exhaustive solver
	Random solver
	Generating configurations

	Greedy solver
	Genetic solver
	Configuration representation
	Fitness function
	Selection function
	Crossover
	Mutation
	Parameter tuning and stopping criteria

	Comparison of solvers
	Genetic solver performance

	Overview of other potential optimization techniques
	Summary

	Provisioning and initial configuration
	Trade-offs across metrics
	Storage on a budget
	Effects of hardware cost
	Effects of model error

	Migration solver
	Trade-offs involved in migration
	Valuing a migration plan
	Comparison against the current configuration

	Modeling migration
	Searching for good plans
	Migration summary

	Automatic adaptation
	Effect of discount rate
	Incremental provisioning
	Repair
	Time to upgrade?

	Conclusions
	Contributions
	Important future work

	Description of modeled components
	Bibliography

